These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21744806)

  • 1. Time-resolved events on the reaction pathway of transcript initiation by a single-subunit RNA polymerase: Raman crystallographic evidence.
    Chen Y; Basu R; Gleghorn ML; Murakami KS; Carey PR
    J Am Chem Soc; 2011 Aug; 133(32):12544-55. PubMed ID: 21744806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Watching the bacteriophage N4 RNA polymerase transcription by time-dependent soak-trigger-freeze X-ray crystallography.
    Basu RS; Murakami KS
    J Biol Chem; 2013 Feb; 288(5):3305-11. PubMed ID: 23235152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides.
    Gleghorn ML; Davydova EK; Basu R; Rothman-Denes LB; Murakami KS
    Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3566-71. PubMed ID: 21321236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concerted Protein and Nucleic Acid Conformational Changes Observed Prior to Nucleotide Incorporation in a Bacterial RNA Polymerase: Raman Crystallographic Evidence.
    Antonopoulos IH; Warner BA; Carey PR
    Biochemistry; 2015 Sep; 54(34):5297-305. PubMed ID: 26222797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved Raman and polyacrylamide gel electrophoresis observations of nucleotide incorporation and misincorporation in RNA within a bacterial RNA polymerase crystal.
    Antonopoulos IH; Murayama Y; Warner BA; Sekine S; Yokoyama S; Carey PR
    Biochemistry; 2015 Jan; 54(3):652-65. PubMed ID: 25584498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase.
    Gleghorn ML; Davydova EK; Rothman-Denes LB; Murakami KS
    Mol Cell; 2008 Dec; 32(5):707-17. PubMed ID: 19061645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray crystal structure of the polymerase domain of the bacteriophage N4 virion RNA polymerase.
    Murakami KS; Davydova EK; Rothman-Denes LB
    Proc Natl Acad Sci U S A; 2008 Apr; 105(13):5046-51. PubMed ID: 18362338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate binding induces a cooperative conformational change in the 12S subunit of transcarboxylase: Raman crystallographic evidence.
    Zheng X; Rivera-Hainaj RE; Zheng Y; Pusztai-Carey M; Hall PR; Yee VC; Carey PR
    Biochemistry; 2002 Sep; 41(35):10741-6. PubMed ID: 12196011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity in transcriptional regulation in the absence of specific DNA binding sites: the case of T7 lysozyme.
    Villemain J; Sousa R
    J Mol Biol; 1998 Sep; 281(5):793-802. PubMed ID: 9719635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The +2 NTP binding drives open complex formation in T7 RNA polymerase.
    Stano NM; Levin MK; Patel SS
    J Biol Chem; 2002 Oct; 277(40):37292-300. PubMed ID: 12151383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of bacteriophage N4 virion RNA polymerase-nucleic acid interactions in transcription complexes.
    Davydova EK; Kaganman I; Kazmierczak KM; Rothman-Denes LB
    J Biol Chem; 2009 Jan; 284(4):1962-70. PubMed ID: 19015264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribonucleoside-5'-diphosphates (NDPs) support RNA polymerase transcription, suggesting NDPs may have been substrates for primordial nucleic acid biosynthesis.
    Gottesman ME; Mustaev A
    J Biol Chem; 2019 Aug; 294(31):11785-11792. PubMed ID: 31189650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and biochemical investigation of bacteriophage N4-encoded RNA polymerases.
    Lenneman BR; Rothman-Denes LB
    Biomolecules; 2015 Apr; 5(2):647-67. PubMed ID: 25924224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein.
    Tagami S; Sekine S; Kumarevel T; Hino N; Murayama Y; Kamegamori S; Yamamoto M; Sakamoto K; Yokoyama S
    Nature; 2010 Dec; 468(7326):978-82. PubMed ID: 21124318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of ribonucleotides with T7 RNA polymerase: probable role of GTP in transcription initiation.
    Sen R; Dasgupta D
    Biochem Biophys Res Commun; 1993 Sep; 195(2):616-22. PubMed ID: 8373401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of open complex instability in kinetic promoter selection by bacteriophage T7 RNA polymerase.
    Villemain J; Guajardo R; Sousa R
    J Mol Biol; 1997 Nov; 273(5):958-77. PubMed ID: 9367784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta.
    Pelletier H; Sawaya MR; Wolfle W; Wilson SH; Kraut J
    Biochemistry; 1996 Oct; 35(39):12762-77. PubMed ID: 8841119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimalism and functionality: Structural lessons from the heterodimeric N4 bacteriophage RNA polymerase II.
    Molodtsov V; Murakami KS
    J Biol Chem; 2018 Aug; 293(35):13616-13625. PubMed ID: 29991593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NTP concentration effects on initial transcription by T7 RNAP indicate that translocation occurs through passive sliding and reveal that divergent promoters have distinct NTP concentration requirements for productive initiation.
    Guajardo R; Lopez P; Dreyfus M; Sousa R
    J Mol Biol; 1998 Sep; 281(5):777-92. PubMed ID: 9719634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases.
    Kazmierczak KM; Davydova EK; Mustaev AA; Rothman-Denes LB
    EMBO J; 2002 Nov; 21(21):5815-23. PubMed ID: 12411499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.