BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21744872)

  • 1. Effects of microfluidization treatment and transglutaminase cross-linking on physicochemical, functional, and conformational properties of peanut protein isolate.
    Hu X; Zhao M; Sun W; Zhao G; Ren J
    J Agric Food Chem; 2011 Aug; 59(16):8886-94. PubMed ID: 21744872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emulsifying properties of the transglutaminase-treated crosslinked product between peanut protein and fish (Decapterus maruadsi) protein hydrolysates.
    Hu X; Ren J; Zhao M; Cui C; He P
    J Sci Food Agric; 2011 Feb; 91(3):578-85. PubMed ID: 21218495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of transglutaminase crosslinking on the rheological characteristics of heated peanut flour dispersions.
    Gharst G; Clare DA; Davis JP; Sanders TH
    J Food Sci; 2007 Sep; 72(7):C369-75. PubMed ID: 17995634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical properties of peanut protein isolate-glucomannan conjugates prepared by ultrasonic treatment.
    Li C; Huang X; Peng Q; Shan Y; Xue F
    Ultrason Sonochem; 2014 Sep; 21(5):1722-7. PubMed ID: 24703823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Molecular Properties of Peanut Protein: Impact of Temperature, Relative Humidity and Vacuum Packaging during Storage.
    Sun X; Jin H; Li Y; Feng H; Liu C; Xu J
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30322048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ultrasound-assisted extraction on the structure and emulsifying properties of peanut protein isolate.
    Sun X; Zhang W; Zhang L; Tian S; Chen F
    J Sci Food Agric; 2021 Feb; 101(3):1150-1160. PubMed ID: 32789860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Low pH Emulsification Properties of Glycated Peanut Protein Isolate by Ultrasound Maillard Reaction.
    Chen L; Chen J; Wu K; Yu L
    J Agric Food Chem; 2016 Jul; 64(27):5531-8. PubMed ID: 27329355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of freeze-thaw cycles on the structure and emulsifying properties of peanut protein isolates.
    Feng H; Jin H; Gao Y; Yan S; Zhang Y; Zhao Q; Xu J
    Food Chem; 2020 Nov; 330():127215. PubMed ID: 32534158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequences of superfine grinding treatment on structure, physicochemical and rheological properties of transglutaminase-crosslinked whey protein isolate.
    Wang C; Li T; Ma L; Li T; Yu H; Hou J; Jiang Z
    Food Chem; 2020 Mar; 309():125757. PubMed ID: 31699562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of physicochemical and conformational properties of kidney bean vicilin (phaseolin) by glycation with glucose: implications for structure-function relationships of legume vicilins.
    Tang CH; Sun X; Foegeding EA
    J Agric Food Chem; 2011 Sep; 59(18):10114-23. PubMed ID: 21866970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate.
    Qin Z; Guo X; Lin Y; Chen J; Liao X; Hu X; Wu J
    J Sci Food Agric; 2013 Mar; 93(5):1105-11. PubMed ID: 22936330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the structural and functional properties of perilla protein isolate from oilseed residues by dynamic high-pressure microfluidization.
    Zhao Q; Yan W; Liu Y; Li J
    Food Chem; 2021 Dec; 365():130497. PubMed ID: 34271327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of microfluidization and transglutaminase cross-linking on the structural and oil-water interface functional properties of whey protein concentrate for improving the thermal stability of nanoemulsions.
    Chen Y; Sun Y; Meng Y; Liu S; Ding Y; Zhou X; Ding Y
    Food Chem; 2023 May; 408():135147. PubMed ID: 36527918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of secondary structure by oxidative stress alters the cross-linking pattern of myosin by microbial transglutaminase.
    Li C; Xiong YL
    Meat Sci; 2015 Oct; 108():97-105. PubMed ID: 26068405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driving forces of disaggregation and reaggregation of peanut protein isolates in aqueous dispersion induced by high-pressure microfluidization.
    Gong K; Chen L; Xia H; Dai H; Li X; Sun L; Kong W; Liu K
    Int J Biol Macromol; 2019 Jun; 130():915-921. PubMed ID: 30802515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peanut allergen reduction and functional property improvement by means of enzymatic hydrolysis and transglutaminase crosslinking.
    Meng S; Tan Y; Chang S; Li J; Maleki S; Puppala N
    Food Chem; 2020 Jan; 302():125186. PubMed ID: 31400700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of physicochemical properties and IgE-binding of soybean proteins derived from the HHP-treated seeds.
    Yang H; Yang A; Gao J; Chen H
    J Food Sci; 2014 Nov; 79(11):C2157-63. PubMed ID: 25307857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosvitin-wheat gluten complex catalyzed by transglutaminase in the presence of Na
    Yang L; Jia J; Zhou X; Liu M; Zhang Q; Tian L; Tan W; Yang Y; Liu X; Duan X
    Food Chem; 2021 Jun; 346():128903. PubMed ID: 33429299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase.
    Truong VD; Clare DA; Catignani GL; Swaisgood HE
    J Agric Food Chem; 2004 Mar; 52(5):1170-6. PubMed ID: 14995116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transglutaminase crosslinking and structural studies of the human small proline rich 3 protein.
    Steinert PM; Candi E; Tarcsa E; Marekov LN; Sette M; Paci M; Ciani B; Guerrieri P; Melino G
    Cell Death Differ; 1999 Sep; 6(9):916-30. PubMed ID: 10510474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.