These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21744921)

  • 1. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
    Trabelsi N; Yosibash Z
    J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.
    Yosibash Z; Trabelsi N; Milgrom C
    J Biomech; 2007; 40(16):3688-99. PubMed ID: 17706228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs.
    Luisier B; Dall'Ara E; Pahr DH
    J Mech Behav Biomed Mater; 2014 Apr; 32():287-299. PubMed ID: 24508715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z; Padan R; Joskowicz L; Milgrom C
    J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    J Biomech; 2012 Nov; 45(16):2884-92. PubMed ID: 23017379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verified and validated finite element analyses of humeri.
    Dahan G; Trabelsi N; Safran O; Yosibash Z
    J Biomech; 2016 May; 49(7):1094-1102. PubMed ID: 26972763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of subject-specific automated p-FE analysis of the proximal femur.
    Trabelsi N; Yosibash Z; Milgrom C
    J Biomech; 2009 Feb; 42(3):234-41. PubMed ID: 19118831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions.
    San Antonio T; Ciaccia M; Müller-Karger C; Casanova E
    Med Eng Phys; 2012 Sep; 34(7):914-9. PubMed ID: 22100056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology based anisotropic finite element models of the proximal femur validated with experimental data.
    Enns-Bray WS; Ariza O; Gilchrist S; Widmer Soyka RP; Vogt PJ; Palsson H; Boyd SK; Guy P; Cripton PA; Ferguson SJ; Helgason B
    Med Eng Phys; 2016 Nov; 38(11):1339-1347. PubMed ID: 27641660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-specific finite element analysis of femurs with cemented hip implants.
    Katz Y; Lubovsky O; Yosibash Z
    Clin Biomech (Bristol, Avon); 2018 Oct; 58():74-89. PubMed ID: 30053643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the mechanical response of the femur with uncertain elastic properties.
    Wille H; Rank E; Yosibash Z
    J Biomech; 2012 Apr; 45(7):1140-8. PubMed ID: 22417868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis.
    Enns-Bray WS; Owoc JS; Nishiyama KK; Boyd SK
    J Biomech; 2014 Oct; 47(13):3272-8. PubMed ID: 25219361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward verified and validated FE simulations of a femur with a cemented hip prosthesis.
    Yosibash Z; Katz A; Milgrom C
    Med Eng Phys; 2013 Jul; 35(7):978-87. PubMed ID: 23040050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.