BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 21744922)

  • 1. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone.
    Kabel J; van Rietbergen B; Dalstra M; Odgaard A; Huiskes R
    J Biomech; 1999 Jul; 32(7):673-80. PubMed ID: 10400354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the effective transversely isotropic elastic constants of a material from known values of the material's orthotropic elastic constants.
    Yoon YJ; Yang G; Cowin SC
    Biomech Model Mechanobiol; 2002 Jun; 1(1):83-93. PubMed ID: 14586709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements.
    Zauel R; Yeni YN; Bay BK; Dong XN; Fyhrie DP
    J Biomech Eng; 2006 Feb; 128(1):1-6. PubMed ID: 16532610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis.
    Williams JL; Lewis JL
    J Biomech Eng; 1982 Feb; 104(1):50-6. PubMed ID: 7078118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transversely isotropic and isotropic material considerations in determining the mechanical response of geometrically accurate bovine tibia bone.
    Yassine RA; Hamade RF
    Med Biol Eng Comput; 2019 Oct; 57(10):2159-2178. PubMed ID: 31377963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modelling of cancellous bone damage using an orthotropic failure criterion and tissue elastic properties as a function of the mineral content and microporosity.
    Megías R; Vercher-Martínez A; Belda R; Peris JL; Larrainzar-Garijo R; Giner E; Fuenmayor FJ
    Comput Methods Programs Biomed; 2022 Jun; 219():106764. PubMed ID: 35366593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elasticity imaging using physics-informed neural networks: Spatial discovery of elastic modulus and Poisson's ratio.
    Kamali A; Sarabian M; Laksari K
    Acta Biomater; 2023 Jan; 155():400-409. PubMed ID: 36402297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading.
    O'Mahony AM; Williams JL; Spencer P
    Clin Oral Implants Res; 2001 Dec; 12(6):648-57. PubMed ID: 11737110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabric and elastic principal directions of cancellous bone are closely related.
    Odgaard A; Kabel J; van Rietbergen B; Dalstra M; Huiskes R
    J Biomech; 1997 May; 30(5):487-95. PubMed ID: 9109560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A regularization-free elasticity reconstruction method for ultrasound elastography with freehand scan.
    Pan X; Liu K; Bai J; Luo J
    Biomed Eng Online; 2014 Sep; 13():132. PubMed ID: 25194553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparsity regularization in dynamic elastography.
    Honarvar M; Sahebjavaher RS; Salcudean SE; Rohling R
    Phys Med Biol; 2012 Oct; 57(19):5909-27. PubMed ID: 22955065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 2000 Feb; 122(1):1-8. PubMed ID: 10790823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium.
    Rouze NC; Wang MH; Palmeri ML; Nightingale KR
    J Biomech; 2013 Nov; 46(16):2761-8. PubMed ID: 24094454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.
    Miller R; Kolipaka A; Nash MP; Young AA
    Int J Numer Method Biomed Eng; 2018 Jun; 34(6):e2979. PubMed ID: 29528568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and reliable biomechanical screening of injectable bone cements for autonomous augmentation of osteoporotic vertebral bodies: appropriate values of elastic constants for finite element models.
    Lewis G; Xu J
    J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):408-17. PubMed ID: 17245745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.