These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 21744927)

  • 1. Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
    Yap CH; Saikrishnan N; Tamilselvan G; Yoganathan AP
    J Biomech Eng; 2011 Jun; 133(6):061007. PubMed ID: 21744927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet.
    Yap CH; Saikrishnan N; Tamilselvan G; Yoganathan AP
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):171-82. PubMed ID: 21416247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet.
    Yap CH; Saikrishnan N; Yoganathan AP
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):231-44. PubMed ID: 21465260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The congenital bicuspid aortic valve can experience high-frequency unsteady shear stresses on its leaflet surface.
    Yap CH; Saikrishnan N; Tamilselvan G; Vasilyev N; Yoganathan AP
    Am J Physiol Heart Circ Physiol; 2012 Sep; 303(6):H721-31. PubMed ID: 22821994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease.
    Chandra S; Rajamannan NM; Sucosky P
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1085-96. PubMed ID: 22294208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulence characteristics downstream of a new trileaflet mechanical heart valve.
    Li CP; Chen SF; Lo CW; Lu PC
    ASAIO J; 2011; 57(3):188-96. PubMed ID: 21499078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry.
    Saikrishnan N; Yap CH; Milligan NC; Vasilyev NV; Yoganathan AP
    Ann Biomed Eng; 2012 Aug; 40(8):1760-75. PubMed ID: 22318396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of mechanical stress in calcification of aortic bioprosthetic valves.
    Thubrikar MJ; Deck JD; Aouad J; Nolan SP
    J Thorac Cardiovasc Surg; 1983 Jul; 86(1):115-25. PubMed ID: 6865456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: is there a link with valve calcification?
    Ge L; Sotiropoulos F
    J Biomech Eng; 2010 Jan; 132(1):014505. PubMed ID: 20524753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle image velocimetry investigation of intravalvular flow fields of a bileaflet mechanical heart valve in a pulsatile flow.
    Subramanian A; Mu H; Kadambi JR; Wernet MP; Brendzel AM; Harasaki H
    J Heart Valve Dis; 2000 Sep; 9(5):721-31. PubMed ID: 11041190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets.
    Cao K; Bukač M; Sucosky P
    Comput Methods Biomech Biomed Engin; 2016; 19(6):603-13. PubMed ID: 26155915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aortic valve leaflet mechanical properties facilitate diastolic valve function.
    Koch TM; Reddy BD; Zilla P; Franz T
    Comput Methods Biomech Biomed Engin; 2010; 13(2):225-34. PubMed ID: 19657802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.
    Ellis JT; Healy TM; Fontaine AA; Weston MW; Jarret CA; Saxena R; Yoganathan AP
    J Heart Valve Dis; 1996 Nov; 5(6):600-6. PubMed ID: 8953437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Hemodynamic performance of newly developed composite stentless porcine aortic valve: in vitro testing and in vivo experiment with sheep].
    Song GM; Zhou JY; Hu SS; Cui JW; Song YH; Tang Y; Zhang Y; Jiang H; Yuan WM; Song XY
    Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(29):2059-63. PubMed ID: 19080436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishing a protocol to quantify leaflet fibroblast responses to physiologic flow through a viable heart valve.
    Weston MW; Goldstein S; Epting RE; He S; Mauldin JM; Yoganathan AP
    ASAIO J; 1997; 43(5):M377-82. PubMed ID: 9360065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of gap width on viscous stresses within the leakage across a bileaflet valve pivot.
    Travis BR; Andersen ME; Fründ ET
    J Heart Valve Dis; 2008 May; 17(3):309-16. PubMed ID: 18592928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro.
    Jennings LM; Butterfield M; Walker PG; Watterson KG; Fisher J
    J Heart Valve Dis; 2001 Mar; 10(2):269-75. PubMed ID: 11297215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamics of the mitral valve under edge-to-edge repair: an in vitro steady flow study.
    Shi L; He Z
    J Biomech Eng; 2009 May; 131(5):051010. PubMed ID: 19388780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.
    Medvitz RB; Kreider JW; Manning KB; Fontaine AA; Deutsch S; Paterson EG
    ASAIO J; 2007; 53(2):122-31. PubMed ID: 17413548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.