These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21744928)

  • 1. Constitutive modeling of coronary arterial media--comparison of three model classes.
    Hollander Y; Durban D; Lu X; Kassab GS; Lanir Y
    J Biomech Eng; 2011 Jun; 133(6):061008. PubMed ID: 21744928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimentally validated microstructural 3D constitutive model of coronary arterial media.
    Hollander Y; Durban D; Lu X; Kassab GS; Lanir Y
    J Biomech Eng; 2011 Mar; 133(3):031007. PubMed ID: 21303183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biaxial elastic material properties of porcine coronary media and adventitia.
    Pandit A; Lu X; Wang C; Kassab GS
    Am J Physiol Heart Circ Physiol; 2005 Jun; 288(6):H2581-7. PubMed ID: 15792993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The validation of a generalized Hooke's law for coronary arteries.
    Wang C; Zhang W; Kassab GS
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H66-73. PubMed ID: 17933971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A validated 3D microstructure-based constitutive model of coronary artery adventitia.
    Chen H; Guo X; Luo T; Kassab GS
    J Appl Physiol (1985); 2016 Jul; 121(1):333-42. PubMed ID: 27174925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructurally motivated constitutive modeling of mouse arteries cultured under altered axial stretch.
    Hansen L; Wan W; Gleason RL
    J Biomech Eng; 2009 Oct; 131(10):101015. PubMed ID: 19831485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biaxial vasoactivity of porcine coronary artery.
    Huo Y; Cheng Y; Zhao X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2058-63. PubMed ID: 22427520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear modulus of porcine coronary artery: contributions of media and adventitia.
    Lu X; Yang J; Zhao JB; Gregersen H; Kassab GS
    Am J Physiol Heart Circ Physiol; 2003 Nov; 285(5):H1966-75. PubMed ID: 14561679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension.
    Lally C; Reid AJ; Prendergast PJ
    Ann Biomed Eng; 2004 Oct; 32(10):1355-64. PubMed ID: 15535054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI.
    Ohayon J; Gharib AM; Garcia A; Heroux J; Yazdani SK; Malvè M; Tracqui P; Martinez MA; Doblare M; Finet G; Pettigrew RI
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H1097-106. PubMed ID: 21685261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive modeling of porcine coronary arteries using designed experiments.
    Dixon SA; Heikes RG; Vito RP
    J Biomech Eng; 2003 Apr; 125(2):274-9. PubMed ID: 12751290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models.
    Veljković DŽ; Ranković VJ; Pantović SB; Rosić MA; Kojić MR
    Acta Bioeng Biomech; 2014; 16(3):37-45. PubMed ID: 25308095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure-based constitutive model of coronary artery with active smooth muscle contraction.
    Chen H; Kassab GS
    Sci Rep; 2017 Aug; 7(1):9339. PubMed ID: 28839149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary analysis of the data from an in vitro inflation-extension test can validate the assumption of arterial tissue elasticity.
    Rachev A; Shazly T
    J Biomech Eng; 2013 Aug; 135(8):84502. PubMed ID: 23722316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between zero-stress state and branching order of porcine left coronary arterial tree.
    Frøbert O; Gregersen H; Bjerre J; Bagger JP; Kassab GS
    Am J Physiol; 1998 Dec; 275(6):H2283-90. PubMed ID: 9843830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model.
    Wang C; Garcia M; Lu X; Lanir Y; Kassab GS
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1200-9. PubMed ID: 16582016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A piece-wise non-linear elastic stress expression of human and pig coronary arteries tested in vitro.
    Carmines DV; McElhaney JH; Stack R
    J Biomech; 1991; 24(10):899-906. PubMed ID: 1744148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.