BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21744934)

  • 1. Mechanical properties of orbital fat and its encapsulating connective tissue.
    Chen K; Weiland JD
    J Biomech Eng; 2011 Jun; 133(6):064505. PubMed ID: 21744934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does subcutaneous adipose tissue behave as an (anti-)thixotropic material?
    Geerligs M; Peters GW; Ackermans PA; Oomens CW; Baaijens FP
    J Biomech; 2010 Apr; 43(6):1153-9. PubMed ID: 20171641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental in vitro mechanical characterization of porcine Glisson's capsule and hepatic veins.
    Umale S; Chatelin S; Bourdet N; Deck C; Diana M; Dhumane P; Soler L; Marescaux J; Willinger R
    J Biomech; 2011 Jun; 44(9):1678-83. PubMed ID: 21481399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.
    Yoo L; Gupta V; Lee C; Kavehpore P; Demer JL
    Biomech Model Mechanobiol; 2011 Dec; 10(6):901-14. PubMed ID: 21207094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments.
    Bass CR; Planchak CJ; Salzar RS; Lucas SR; Rafaels KA; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jul; 32(16):E436-42. PubMed ID: 17632382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical properties of human and porcine corneas.
    Elsheikh A; Alhasso D; Rama P
    Exp Eye Res; 2008 May; 86(5):783-90. PubMed ID: 18396276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elasticity, viscosity, and deformation of orbital fat.
    Schoemaker I; Hoefnagel PP; Mastenbroek TJ; Kolff CF; Schutte S; van der Helm FC; Picken SJ; Gerritsen AF; Wielopolski PA; Spekreijse H; Simonsz HJ
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4819-26. PubMed ID: 17065493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic and viscoelastic properties of porcine subdermal fat using MRI and inverse FEA.
    Sims AM; Stait-Gardner T; Fong L; Morley JW; Price WS; Hoffman M; Simmons A; Schindhelm K
    Biomech Model Mechanobiol; 2010 Dec; 9(6):703-11. PubMed ID: 20309602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo.
    Moerman KM; Holt CA; Evans SL; Simms CK
    J Biomech; 2009 May; 42(8):1150-3. PubMed ID: 19362312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-rate dependent material properties of the porcine and human kidney capsule.
    Snedeker JG; Niederer P; Schmidlin FR; Farshad M; Demetropoulos CK; Lee JB; Yang KH
    J Biomech; 2005 May; 38(5):1011-21. PubMed ID: 15797583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of human lung parenchyma.
    Gao J; Huang W; Yen RT
    Biomed Sci Instrum; 2006; 42():172-80. PubMed ID: 16817604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical characterization of anisotropic planar biological soft tissues using large indentation: a computational feasibility study.
    Cox MA; Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2006 Jun; 128(3):428-36. PubMed ID: 16706592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic properties of porcine ocular posterior soft tissues.
    Chen K; Rowley AP; Weiland JD
    J Biomed Mater Res A; 2010 May; 93(2):634-45. PubMed ID: 19591238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical characterization of anisotropic planar biological soft tissues using finite indentation: experimental feasibility.
    Cox MA; Driessen NJ; Boerboom RA; Bouten CV; Baaijens FP
    J Biomech; 2008; 41(2):422-9. PubMed ID: 17897653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orbital stress analysis, part V: systematic approach to validate a finite element model of a human orbit.
    Al-sukhun J; Penttilä H; Ashammakhi N
    J Craniofac Surg; 2012 May; 23(3):669-74. PubMed ID: 22565871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation.
    Cox MA; Gawlitta D; Driessen NJ; Oomens CW; Baaijens FP
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):585-92. PubMed ID: 19230150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of the failure of ventricular tissue due to deep penetration: the impact of constitutive properties.
    Forsell C; Gasser TC
    J Biomech; 2011 Jan; 44(1):45-51. PubMed ID: 20825943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous determination of the nonlinear-elastic properties of skin and subcutaneous tissue in unconfined compression tests.
    Wu JZ; Cutlip RG; Andrew ME; Dong RG
    Skin Res Technol; 2007 Feb; 13(1):34-42. PubMed ID: 17250530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.