These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21745457)

  • 1. A theoretical investigation of the functional role of the axial methionine ligand of the Cu(A) site in cytochrome c oxidase.
    Kang J; Kino H; Tateno M
    Biochim Biophys Acta; 2011 Oct; 1807(10):1314-27. PubMed ID: 21745457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The axial methionine ligand may control the redox reorganizations in the active site of blue copper proteins.
    Ando K
    J Chem Phys; 2010 Nov; 133(17):175101. PubMed ID: 21054068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer pathways in cytochrome c oxidase.
    Lucas MF; Rousseau DL; Guallar V
    Biochim Biophys Acta; 2011 Oct; 1807(10):1305-13. PubMed ID: 21419097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axial ligand modulation of the electronic structures of binuclear copper sites: analysis of paramagnetic 1H NMR spectra of Met160Gln Cu(A).
    Fernández CO; Cricco JA; Slutter CE; Richards JH; Gray HB; Vila AJ
    J Am Chem Soc; 2001 Nov; 123(47):11678-85. PubMed ID: 11716725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axial interactions in the mixed-valent CuA active site and role of the axial methionine in electron transfer.
    Tsai ML; Hadt RG; Marshall NM; Wilson TD; Lu Y; Solomon EI
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14658-63. PubMed ID: 23964128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutants of the CuA site in cytochrome c oxidase of Rhodobacter sphaeroides: II. Rapid kinetic analysis of electron transfer.
    Wang K; Geren L; Zhen Y; Ma L; Ferguson-Miller S; Durham B; Millett F
    Biochemistry; 2002 Feb; 41(7):2298-304. PubMed ID: 11841222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and mutagenesis studies on the CuA centre from the cytochrome-c oxidase complex of Paracoccus denitrificans.
    Farrar JA; Lappalainen P; Zumft WG; Saraste M; Thomson AJ
    Eur J Biochem; 1995 Aug; 232(1):294-303. PubMed ID: 7556164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methionine Ligand Interaction in a Blue Copper Protein Characterized by Site-Selective Infrared Spectroscopy.
    Le Sueur AL; Schaugaard RN; Baik MH; Thielges MC
    J Am Chem Soc; 2016 Jun; 138(22):7187-93. PubMed ID: 27164303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory conservation of energy with dioxygen: cytochrome C oxidase.
    Yoshikawa S; Shimada A; Shinzawa-Itoh K
    Met Ions Life Sci; 2015; 15():89-130. PubMed ID: 25707467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsed EPR/ENDOR characterization of perturbations of the Cu(A) center ground state by axial methionine ligand mutations.
    Slutter CE; Gromov I; Epel B; Pecht I; Richards JH; Goldfarb D
    J Am Chem Soc; 2001 Jun; 123(22):5325-36. PubMed ID: 11457396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox Bohr effects and the role of heme a in the proton pump of bovine heart cytochrome c oxidase.
    Capitanio G; Martino PL; Capitanio N; Papa S
    Biochim Biophys Acta; 2011 Oct; 1807(10):1287-94. PubMed ID: 21320464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate.
    Chen P; Bell J; Eipper BA; Solomon EI
    Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
    Popović DM; Stuchebrukhov AA
    J Am Chem Soc; 2004 Feb; 126(6):1858-71. PubMed ID: 14871119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFT/electrostatic calculations of pK(a) values in cytochrome c oxidase.
    Popović DM; Quenneville J; Stuchebrukhov AA
    J Phys Chem B; 2005 Mar; 109(8):3616-26. PubMed ID: 16851400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cooperative model for proton pumping in cytochrome c oxidase.
    Papa S; Capitanio N; Capitanio G
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):353-64. PubMed ID: 15100051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational studies of Cu(II)/Met and Cu(I)/Met binding motifs relevant for the chemistry of Alzheimer's disease.
    Gómez-Balderas R; Raffa DF; Rickard GA; Brunelle P; Rauk A
    J Phys Chem A; 2005 Jun; 109(24):5498-508. PubMed ID: 16839078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reorganization energy for internal electron transfer in multicopper oxidases.
    Hu L; Farrokhnia M; Heimdal J; Shleev S; Rulíšek L; Ryde U
    J Phys Chem B; 2011 Nov; 115(45):13111-26. PubMed ID: 21955325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and spectroscopic investigation on the role of Met residues in Cu(II) binding to the non-octarepeat site of the human prion protein.
    Remelli M; Valensin D; Toso L; Gralka E; Guerrini R; Marzola E; Kozłowski H
    Metallomics; 2012 Aug; 4(8):794-806. PubMed ID: 22791135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of the interaction of Cu(I) with cys residues at the binding site of the yeast metallochaperone Cu(I)-Atx1.
    Dalosto SD
    J Phys Chem B; 2007 Mar; 111(11):2932-40. PubMed ID: 17388422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.