BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 21745463)

  • 1. Neurovascular development in the embryonic zebrafish hindbrain.
    Ulrich F; Ma LH; Baker RG; Torres-Vázquez J
    Dev Biol; 2011 Sep; 357(1):134-51. PubMed ID: 21745463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish.
    Hernandez RE; Rikhof HA; Bachmann R; Moens CB
    Development; 2004 Sep; 131(18):4511-20. PubMed ID: 15342476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secretogranin-II plays a critical role in zebrafish neurovascular modeling.
    Tao B; Hu H; Mitchell K; Chen J; Jia H; Zhu Z; Trudeau VL; Hu W
    J Mol Cell Biol; 2018 Oct; 10(5):388-401. PubMed ID: 29757409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly and patterning of the vascular network of the vertebrate hindbrain.
    Fujita M; Cha YR; Pham VN; Sakurai A; Roman BL; Gutkind JS; Weinstein BM
    Development; 2011 May; 138(9):1705-15. PubMed ID: 21429985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of two distinct classes of neurons by gad2 and zic1 promoter/enhancer elements in the dorsal hindbrain of developing zebrafish reveals neuronal connectivity related to the auditory and lateral line systems.
    Sassa T; Aizawa H; Okamoto H
    Dev Dyn; 2007 Mar; 236(3):706-18. PubMed ID: 17279576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of novel caudal hindbrain genes reveals different regulatory logic for gene expression in rhombomere 4 versus 5/6 in embryonic zebrafish.
    Ghosh P; Maurer JM; Sagerström CG
    Neural Dev; 2018 Jun; 13(1):13. PubMed ID: 29945667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted germ line disruptions reveal general and species-specific roles for paralog group 1 hox genes in zebrafish.
    Weicksel SE; Gupta A; Zannino DA; Wolfe SA; Sagerström CG
    BMC Dev Biol; 2014 Jun; 14():25. PubMed ID: 24902847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain.
    Linville A; Gumusaneli E; Chandraratna RA; Schilling TF
    Dev Biol; 2004 Jun; 270(1):186-99. PubMed ID: 15136149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple mechanisms mediate motor neuron migration in the zebrafish hindbrain.
    Bingham SM; Sittaramane V; Mapp O; Patil S; Prince VE; Chandrasekhar A
    Dev Neurobiol; 2010 Feb; 70(2):87-99. PubMed ID: 19937772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain.
    Cheng YC; Amoyel M; Qiu X; Jiang YJ; Xu Q; Wilkinson DG
    Dev Cell; 2004 Apr; 6(4):539-50. PubMed ID: 15068793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early requirement for fgf8 function during hindbrain pattern formation in zebrafish.
    Wiellette EL; Sive H
    Dev Dyn; 2004 Feb; 229(2):393-9. PubMed ID: 14745965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The characterization of a zebrafish mid-hindbrain mutant, mid-hindbrain gone (mgo).
    Shima T; Znosko W; Tsang M
    Dev Dyn; 2009 Apr; 238(4):899-907. PubMed ID: 19301393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pbx-dependent regulation of lbx gene expression in developing zebrafish embryos.
    Lukowski CM; Drummond DL; Waskiewicz AJ
    Genome; 2011 Dec; 54(12):973-85. PubMed ID: 22077099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olig2+ precursors produce abducens motor neurons and oligodendrocytes in the zebrafish hindbrain.
    Zannino DA; Appel B
    J Neurosci; 2009 Feb; 29(8):2322-33. PubMed ID: 19244509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epithelial relaxation mediated by the myosin phosphatase regulator Mypt1 is required for brain ventricle lumen expansion and hindbrain morphogenesis.
    Gutzman JH; Sive H
    Development; 2010 Mar; 137(5):795-804. PubMed ID: 20147380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein.
    Koenig AL; Baltrunaite K; Bower NI; Rossi A; Stainier DY; Hogan BM; Sumanas S
    Dev Biol; 2016 Mar; 411(1):115-27. PubMed ID: 26769101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frizzled3a and Celsr2 function in the neuroepithelium to regulate migration of facial motor neurons in the developing zebrafish hindbrain.
    Wada H; Tanaka H; Nakayama S; Iwasaki M; Okamoto H
    Development; 2006 Dec; 133(23):4749-59. PubMed ID: 17079269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The homeodomain transcription factor drg11 is expressed in primary sensory neurons and their putative CNS targets during embryonic development of the zebrafish.
    McCormick LJ; Hutt JA; Hazan J; Houart C; Cohen J
    Gene Expr Patterns; 2007 Jan; 7(3):289-96. PubMed ID: 17045851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression pattern for unc5b, an axon guidance gene in embryonic zebrafish development.
    Kaur S; Abu-Asab MS; Singla S; Yeo SY; Ramchandran R
    Gene Expr; 2007; 13(6):321-7. PubMed ID: 17708418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forebrain and hindbrain development in zebrafish is sensitive to ethanol exposure involving agrin, Fgf, and sonic hedgehog function.
    Zhang C; Ojiaku P; Cole GJ
    Birth Defects Res A Clin Mol Teratol; 2013 Jan; 97(1):8-27. PubMed ID: 23184466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.