These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
491 related articles for article (PubMed ID: 21745509)
1. Photoresponsive hydrogels for biomedical applications. Tomatsu I; Peng K; Kros A Adv Drug Deliv Rev; 2011 Nov; 63(14-15):1257-66. PubMed ID: 21745509 [TBL] [Abstract][Full Text] [Related]
2. In situ gelling hydrogels for pharmaceutical and biomedical applications. Van Tomme SR; Storm G; Hennink WE Int J Pharm; 2008 May; 355(1-2):1-18. PubMed ID: 18343058 [TBL] [Abstract][Full Text] [Related]
3. Hydrogel-Based Drug Delivery Systems for Poorly Water-Soluble Drugs. McKenzie M; Betts D; Suh A; Bui K; Kim LD; Cho H Molecules; 2015 Nov; 20(11):20397-408. PubMed ID: 26580588 [TBL] [Abstract][Full Text] [Related]
4. Light-responsive biomaterials: development and applications. Katz JS; Burdick JA Macromol Biosci; 2010 Apr; 10(4):339-48. PubMed ID: 20014197 [TBL] [Abstract][Full Text] [Related]
6. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery. Wang H; Yang Z Nanoscale; 2012 Sep; 4(17):5259-67. PubMed ID: 22814874 [TBL] [Abstract][Full Text] [Related]
9. Sustained release of proteins from high water content supramolecular polymer hydrogels. Appel EA; Loh XJ; Jones ST; Dreiss CA; Scherman OA Biomaterials; 2012 Jun; 33(18):4646-52. PubMed ID: 22459194 [TBL] [Abstract][Full Text] [Related]
10. In situ-forming hydrogels for sustained ophthalmic drug delivery. Nanjawade BK; Manvi FV; Manjappa AS J Control Release; 2007 Sep; 122(2):119-34. PubMed ID: 17719120 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of cyclic acetal based degradable hydrogels. Kaihara S; Matsumura S; Fisher JP Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640 [TBL] [Abstract][Full Text] [Related]
12. Oral pulsatile delivery systems based on swellable hydrophilic polymers. Gazzaniga A; Palugan L; Foppoli A; Sangalli ME Eur J Pharm Biopharm; 2008 Jan; 68(1):11-8. PubMed ID: 17888641 [TBL] [Abstract][Full Text] [Related]
13. Molecular imprinting within hydrogels II: progress and analysis of the field. Byrne ME; Salian V Int J Pharm; 2008 Dec; 364(2):188-212. PubMed ID: 18824226 [TBL] [Abstract][Full Text] [Related]
14. Hydrogels in a historical perspective: from simple networks to smart materials. Buwalda SJ; Boere KW; Dijkstra PJ; Feijen J; Vermonden T; Hennink WE J Control Release; 2014 Sep; 190():254-73. PubMed ID: 24746623 [TBL] [Abstract][Full Text] [Related]
16. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Wang F; Li Z; Khan M; Tamama K; Kuppusamy P; Wagner WR; Sen CK; Guan J Acta Biomater; 2010 Jun; 6(6):1978-91. PubMed ID: 20004745 [TBL] [Abstract][Full Text] [Related]
17. Two-photon lithography in the future of cell-based therapeutics and regenerative medicine: a review of techniques for hydrogel patterning and controlled release. Kasko AM; Wong DY Future Med Chem; 2010 Nov; 2(11):1669-80. PubMed ID: 21428838 [TBL] [Abstract][Full Text] [Related]
18. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. Altunbas A; Pochan DJ Top Curr Chem; 2012; 310():135-67. PubMed ID: 21809190 [TBL] [Abstract][Full Text] [Related]
19. Designing cell-compatible hydrogels for biomedical applications. Seliktar D Science; 2012 Jun; 336(6085):1124-8. PubMed ID: 22654050 [TBL] [Abstract][Full Text] [Related]