BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21745560)

  • 1. Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: a biotech's challenge.
    Iurescia S; Fioretti D; Fazio VM; Rinaldi M
    Biotechnol Adv; 2012; 30(1):372-83. PubMed ID: 21745560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-cell epitope vaccine design by immunoinformatics.
    Patronov A; Doytchinova I
    Open Biol; 2013 Jan; 3(1):120139. PubMed ID: 23303307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunoinformatics study to explore dengue (DENV-1) proteome to design multi-epitope vaccine construct by using CD4+ epitopes.
    Bano N; Kumar A
    J Genet Eng Biotechnol; 2023 Nov; 21(1):128. PubMed ID: 37987878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riding the wave of innovation: immunoinformatics in fish disease control.
    Razali SA; Shamsir MS; Ishak NF; Low CF; Azemin WA
    PeerJ; 2023; 11():e16419. PubMed ID: 38089909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancements and hurdles in the development of a vaccine for triple-negative breast cancer: A comprehensive review of multi-omics and immunomics strategies.
    Dhanushkumar T; M E S; Selvam PK; Rambabu M; Dasegowda KR; Vasudevan K; George Priya Doss C
    Life Sci; 2024 Jan; 337():122360. PubMed ID: 38135117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph-theoretical formulation of the generalized epitope-based vaccine design problem.
    Dorigatti E; Schubert B
    PLoS Comput Biol; 2020 Oct; 16(10):e1008237. PubMed ID: 33095790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cancer Epitope Database and Analysis Resource: A Blueprint for the Establishment of a New Bioinformatics Resource for Use by the Cancer Immunology Community.
    Koşaloğlu-Yalçın Z; Blazeska N; Carter H; Nielsen M; Cohen E; Kufe D; Conejo-Garcia J; Robbins P; Schoenberger SP; Peters B; Sette A
    Front Immunol; 2021; 12():735609. PubMed ID: 34504503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear B-Cell Epitope Prediction for In Silico Vaccine Design: A Performance Review of Methods Available via Command-Line Interface.
    Galanis KA; Nastou KC; Papandreou NC; Petichakis GN; Pigis DG; Iconomidou VA
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational vaccinology and the ICoVax 2012 workshop.
    He Y; Cao Z; De Groot AS; Brusic V; Schönbach C; Petrovsky N
    BMC Bioinformatics; 2013; 14 Suppl 4(Suppl 4):I1. PubMed ID: 23514034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of progress from empirical to rational design in modern vaccine development, with an emphasis on computational tools and immunoinformatics approaches.
    Soleymani S; Tavassoli A; Housaindokht MR
    Comput Biol Med; 2022 Jan; 140():105057. PubMed ID: 34839187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ICoVax 2013: the 3rd ISV Pre-conference Computational Vaccinology Workshop.
    De Groot AS; De Groot P; He Y
    BMC Bioinformatics; 2014; 15 Suppl 4(Suppl 4):I1. PubMed ID: 25104130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concept and application of a computational vaccinology workflow.
    Söllner J; Heinzel A; Summer G; Fechete R; Stipkovits L; Szathmary S; Mayer B
    Immunome Res; 2010 Nov; 6 Suppl 2(Suppl 2):S7. PubMed ID: 21067549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational tools for modern vaccine development.
    Sunita ; Sajid A; Singh Y; Shukla P
    Hum Vaccin Immunother; 2020 Mar; 16(3):723-735. PubMed ID: 31545127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PoxiPred: An Artificial-Intelligence-Based Method for the Prediction of Potential Antigens and Epitopes to Accelerate Vaccine Development Efforts against Poxviruses.
    Martinez GS; Dutt M; Kelvin DJ; Kumar A
    Biology (Basel); 2024 Feb; 13(2):. PubMed ID: 38392343
    [No Abstract]   [Full Text] [Related]  

  • 15. BepiTBR: T-B reciprocity enhances B cell epitope prediction.
    Zhu J; Gouru A; Wu F; Berzofsky JA; Xie Y; Wang T
    iScience; 2022 Feb; 25(2):103764. PubMed ID: 35128358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Family-Specific Training Improves Linear B Cell Epitope Prediction for Emerging Viruses.
    Liu R; Hu YF; Du J; Zhang BZ; Yau T; Fan X; Huang JD
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3669-3680. PubMed ID: 37665713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines.
    Lofano G; Mallett CP; Bertholet S; O'Hagan DT
    NPJ Vaccines; 2020; 5():88. PubMed ID: 33024579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered Nanodelivery Systems to Improve DNA Vaccine Technologies.
    Lim M; Badruddoza AZM; Firdous J; Azad M; Mannan A; Al-Hilal TA; Cho CS; Islam MA
    Pharmaceutics; 2020 Jan; 12(1):. PubMed ID: 31906277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MHCEpitopeEnergy, a Flexible Rosetta-Based Biotherapeutic Deimmunization Platform.
    Yachnin BJ; Mulligan VK; Khare SD; Bailey-Kellogg C
    J Chem Inf Model; 2021 May; 61(5):2368-2382. PubMed ID: 33900750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WUREN: Whole-modal union representation for epitope prediction.
    Wang X; Gao X; Fan X; Huai Z; Zhang G; Yao M; Wang T; Huang X; Lai L
    Comput Struct Biotechnol J; 2024 Dec; 23():2122-2131. PubMed ID: 38817963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.