These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 21745606)
1. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Fu Q; Saiz E; Tomsia AP Acta Biomater; 2011 Oct; 7(10):3547-54. PubMed ID: 21745606 [TBL] [Abstract][Full Text] [Related]
2. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Roohani-Esfahani SI; Newman P; Zreiqat H Sci Rep; 2016 Jan; 6():19468. PubMed ID: 26782020 [TBL] [Abstract][Full Text] [Related]
3. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior. Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654 [TBL] [Abstract][Full Text] [Related]
4. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. Fu Q; Rahaman MN; Fu H; Liu X J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution. Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972 [TBL] [Abstract][Full Text] [Related]
6. Bioinspired Strong and Highly Porous Glass Scaffolds. Fu Q; Saiz E; Tomsia AP Adv Funct Mater; 2011 Mar; 21(6):1058-1063. PubMed ID: 21544222 [TBL] [Abstract][Full Text] [Related]
7. Robocasting of Bioactive SiO Baino F; Barberi J; Fiume E; Orlygsson G; Massera J; Verné E J Healthc Eng; 2019; 2019():5153136. PubMed ID: 31098008 [TBL] [Abstract][Full Text] [Related]
8. In vitro Evaluation of Porous borosilicate, borophosphate and phosphate Bioactive Glasses Scaffolds fabricated using Foaming Agent for Bone Regeneration. Erasmus EP; Sule R; Johnson OT; Massera J; Sigalas I Sci Rep; 2018 Feb; 8(1):3699. PubMed ID: 29487328 [TBL] [Abstract][Full Text] [Related]
9. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700 [TBL] [Abstract][Full Text] [Related]
10. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair. Liu X; Rahaman MN; Hilmas GE; Bal BS Acta Biomater; 2013 Jun; 9(6):7025-34. PubMed ID: 23438862 [TBL] [Abstract][Full Text] [Related]
11. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Kolan KC; Leu MC; Hilmas GE; Brown RF; Velez M Biofabrication; 2011 Jun; 3(2):025004. PubMed ID: 21636879 [TBL] [Abstract][Full Text] [Related]
14. Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Liu X; Rahaman MN; Fu Q; Tomsia AP Acta Biomater; 2012 Jan; 8(1):415-23. PubMed ID: 21855661 [TBL] [Abstract][Full Text] [Related]
15. Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds. McNamara SL; Rnjak-Kovacina J; Schmidt DF; Lo TJ; Kaplan DL Biomaterials; 2014 Aug; 35(25):6941-53. PubMed ID: 24881027 [TBL] [Abstract][Full Text] [Related]
16. Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for bone repair. Doiphode ND; Huang T; Leu MC; Rahaman MN; Day DE J Mater Sci Mater Med; 2011 Mar; 22(3):515-23. PubMed ID: 21279671 [TBL] [Abstract][Full Text] [Related]
17. Influence of polylactide coating stereochemistry on mechanical and in vitro degradation properties of porous bioactive glass scaffolds for bone regeneration. Uppstu P; Engblom S; Inkinen S; Hupa L; Wilén CE J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35328. PubMed ID: 37737070 [TBL] [Abstract][Full Text] [Related]
18. Compressive Strength Enhancement of Carbon Nanotube Reinforced 13-93B1 Bioactive Glass Scaffolds. Dixit K; Sinha N J Nanosci Nanotechnol; 2019 May; 19(5):2738-2746. PubMed ID: 30501774 [TBL] [Abstract][Full Text] [Related]
19. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology. Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444 [TBL] [Abstract][Full Text] [Related]
20. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]