These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 217465)

  • 1. Investigation of the significance of a carbon and redox balance to the measurement of gaseous metabolism of Saccharomyces cerevisiae.
    Barford JP; Hall RJ
    Biotechnol Bioeng; 1979 Apr; 21(4):609-26. PubMed ID: 217465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaseous environments modify physiology in the brewing yeast Saccharomyces cerevisiae during batch alcoholic fermentation.
    Pham TH; Mauvais G; Vergoignan C; De Coninck J; Dumont F; Lherminier J; Cachon R; Feron G
    J Appl Microbiol; 2008 Sep; 105(3):858-74. PubMed ID: 18422954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of in vivo oxygen uptake and carbon dioxide evolution rates from off-gas measurements under highly dynamic conditions.
    Wu L; Lange HC; Van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2003 Feb; 81(4):448-58. PubMed ID: 12491530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor.
    Belo I; Pinheiro R; Mota M
    Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae.
    Xu Z; Tsurugi K
    Yeast; 2007 Mar; 24(3):161-70. PubMed ID: 17351907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae.
    Thomsson E; Larsson C
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):533-42. PubMed ID: 16317544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol.
    de Jong-Gubbels P; Vanrolleghem P; Heijnen S; van Dijken JP; Pronk JT
    Yeast; 1995 Apr; 11(5):407-18. PubMed ID: 7597844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae.
    Franzén CJ
    Yeast; 2003 Jan; 20(2):117-32. PubMed ID: 12518316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fate of glucose in strains S288C and S173-6B of the yeast Saccharomyces cerevisiae.
    Pedler SM; Wallace PG; Wallace JC; Berry MN
    Yeast; 1997 Feb; 13(2):119-25. PubMed ID: 9046093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae.
    Wang M; Zhao J; Yang Z; Du Z; Yang Z
    Bioelectrochemistry; 2007 Nov; 71(2):107-12. PubMed ID: 17499559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interplay between sulphur and selenium metabolism influences the intracellular redox balance in Saccharomyces cerevisiae.
    Mapelli V; Hillestrøm PR; Patil K; Larsen EH; Olsson L
    FEMS Yeast Res; 2012 Feb; 12(1):20-32. PubMed ID: 22093810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Limiting the growth of Saccharomyces serevisiae yeasts under chemostat conditions by carbon and nitrogen sources].
    Shkidchenko AN
    Mikrobiologiia; 1984; 53(1):58-62. PubMed ID: 6369084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon dioxide inhibition of yeast growth in biomass production.
    Chen SL; Gutmains F
    Biotechnol Bioeng; 1976 Oct; 18(10):1455-62. PubMed ID: 786407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass.
    Navarro RM; Peña MA; Fierro JL
    Chem Rev; 2007 Oct; 107(10):3952-91. PubMed ID: 17715983
    [No Abstract]   [Full Text] [Related]  

  • 18. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations.
    Hantelmann K; Kollecker M; Hüll D; Hitzmann B; Scheper T
    J Biotechnol; 2006 Feb; 121(3):410-7. PubMed ID: 16125265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling aerobic carbon source degradation processes using titrimetric data and combined respirometric-titrimetric data: structural and practical identifiability.
    Gernaey K; Petersen B; Dochain D; Vanrolleghem PA
    Biotechnol Bioeng; 2002 Sep; 79(7):754-67. PubMed ID: 12209798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.