BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21746736)

  • 1. Age-related striatal dopaminergic denervation and severity of a slip perturbation.
    Cham R; Perera S; Studenski SA; Bohnen NI
    J Gerontol A Biol Sci Med Sci; 2011 Sep; 66(9):980-5. PubMed ID: 21746736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striatal dopamine denervation and sensory integration for balance in middle-aged and older adults.
    Cham R; Perera S; Studenski SA; Bohnen NI
    Gait Posture; 2007 Oct; 26(4):516-25. PubMed ID: 17196819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking Stability During Normal Walking and Its Association with Slip Intensity Among Individuals with Incomplete Spinal Cord Injury.
    Arora T; Musselman KE; Lanovaz JL; Linassi G; Arnold C; Milosavljevic S; Oates A
    PM R; 2019 Mar; 11(3):270-277. PubMed ID: 30036682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating proactive balance control in individuals with incomplete spinal cord injury while walking on a known slippery surface.
    Bone MD; Arora T; Musselman KE; Lanovaz JL; Linassi GA; Oates AR
    Neurosci Lett; 2021 Apr; 749():135744. PubMed ID: 33610664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of arm motion on postural stability when recovering from a slip perturbation.
    Gholizadeh H; Hill A; Nantel J
    J Biomech; 2019 Oct; 95():109269. PubMed ID: 31443945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Striatal dopaminergic denervation and gait in healthy adults.
    Cham R; Studenski SA; Perera S; Bohnen NI
    Exp Brain Res; 2008 Mar; 185(3):391-8. PubMed ID: 17973106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of slip severity on muscle activation of the trailing leg during an unexpected slip.
    O'Connell C; Chambers A; Mahboobin A; Cham R
    J Electromyogr Kinesiol; 2016 Jun; 28():61-6. PubMed ID: 27023486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel wearable device to deliver unconstrained, unpredictable slip perturbations during gait.
    Rasmussen CM; Hunt NH
    J Neuroeng Rehabil; 2019 Oct; 16(1):118. PubMed ID: 31623680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curvilinear walking elevates fall risk and modulates slip and compensatory step attributes after unconstrained human slips.
    Rasmussen CM; Mun S; Ouattas A; Walski A; Curtze C; Hunt NH
    J Exp Biol; 2024 Mar; 227(6):. PubMed ID: 38456285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls.
    Yang F; Cereceres P; Qiao M
    Gait Posture; 2018 Oct; 66():160-165. PubMed ID: 30195219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconstrained slip mechanics and stepping reactions depend on slip onset timing.
    Rasmussen CM; Hunt NH
    J Biomech; 2021 Aug; 125():110572. PubMed ID: 34186292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does stroke-induced sensorimotor impairment and perturbation intensity affect gait-slip outcomes?
    Dusane S; Gangwani R; Patel P; Bhatt T
    J Biomech; 2021 Mar; 118():110255. PubMed ID: 33581438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to repeated gait-slip perturbations among individuals with multiple sclerosis.
    Yang F; Su X; Wen PS; Lazarus J
    Mult Scler Relat Disord; 2019 Oct; 35():135-141. PubMed ID: 31376685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inefficient postural responses to unexpected slips during walking in older adults.
    Tang PF; Woollacott MH
    J Gerontol A Biol Sci Med Sci; 1998 Nov; 53(6):M471-80. PubMed ID: 9823752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait adaptations to awareness and experience of a slip when walking on a cross-slope.
    Lawrence D; Domone S; Heller B; Hendra T; Mawson S; Wheat J
    Gait Posture; 2015 Oct; 42(4):575-9. PubMed ID: 26404081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive balance responses to a trip and slip during gait in people with multiple sclerosis.
    Mohamed Suhaimy MSB; Lord SR; Hoang PD; Nieto A; Sturnieks DL; Okubo Y
    Clin Biomech (Bristol, Avon); 2021 Dec; 90():105511. PubMed ID: 34710843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related differences in reactive balance control and fall-risk in people with chronic stroke.
    Purohit R; Wang S; Dusane S; Bhatt T
    Gait Posture; 2023 May; 102():186-192. PubMed ID: 37031629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer of reactive balance adaptation from stance-slip perturbation to stance-trip perturbation in chronic stroke survivors.
    Dusane S; Wang E; Bhatt T
    Restor Neurol Neurosci; 2019; 37(5):469-482. PubMed ID: 31561399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.