These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21747535)

  • 1. High-performance laterally-arranged multiple-bandgap solar cells using spatially composition-graded CdxPb1-xS nanowires on a single substrate: a design study.
    Caselli DA; Ning CZ
    Opt Express; 2011 Jul; 19 Suppl 4():A686-94. PubMed ID: 21747535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bandgap broadly tunable GaZnSeAs alloy nanowires.
    Wang Y; Xu J; Ren P; Zhang Q; Zhuang X; Zhu X; Wan Q; Zhou H; Hu W; Pan A
    Phys Chem Chem Phys; 2013 Feb; 15(8):2912-6. PubMed ID: 23340858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.
    Caselli D; Liu Z; Shelhammer D; Ning CZ
    Nano Lett; 2014 Oct; 14(10):5772-9. PubMed ID: 25203692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial silicon nanowires as solar cells and nanoelectronic power sources.
    Tian B; Zheng X; Kempa TJ; Fang Y; Yu N; Yu G; Huang J; Lieber CM
    Nature; 2007 Oct; 449(7164):885-9. PubMed ID: 17943126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition and bandgap-graded semiconductor alloy nanowires.
    Zhuang X; Ning CZ; Pan A
    Adv Mater; 2012 Jan; 24(1):13-33. PubMed ID: 22105863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single element spectral splitting solar concentrator for multiple cells CPV system.
    Stefancich M; Zayan A; Chiesa M; Rampino S; Roncati D; Kimerling L; Michel J
    Opt Express; 2012 Apr; 20(8):9004-18. PubMed ID: 22513611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial bandgap engineering along single alloy nanowires.
    Gu F; Yang Z; Yu H; Xu J; Wang P; Tong L; Pan A
    J Am Chem Soc; 2011 Feb; 133(7):2037-9. PubMed ID: 21271702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxide nanowire networks and their electronic and optoelectronic characteristics.
    Mathews N; Varghese B; Sun C; Thavasi V; Andreasson BP; Sow CH; Ramakrishna S; Mhaisalkar SG
    Nanoscale; 2010 Oct; 2(10):1984-98. PubMed ID: 20835439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites.
    Tan B; Wu Y
    J Phys Chem B; 2006 Aug; 110(32):15932-8. PubMed ID: 16898747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light absorption and emission in nanowire array solar cells.
    Kupec J; Stoop RL; Witzigmann B
    Opt Express; 2010 Dec; 18(26):27589-605. PubMed ID: 21197033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.
    Ye Y; Dai Y; Dai L; Shi Z; Liu N; Wang F; Fu L; Peng R; Wen X; Chen Z; Liu Z; Qin G
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3406-10. PubMed ID: 21058686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.
    Wong WY; Ho CL
    Acc Chem Res; 2010 Sep; 43(9):1246-56. PubMed ID: 20608673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires.
    Mora-Seró I; Giménez S; Fabregat-Santiago F; Azaceta E; Tena-Zaera R; Bisquert J
    Phys Chem Chem Phys; 2011 Apr; 13(15):7162-9. PubMed ID: 21409230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.
    Rumyantsev VD
    Opt Express; 2010 Apr; 18(9):A17-24. PubMed ID: 20607883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.
    Rumyantsev VD
    Opt Express; 2010 Apr; 18 Suppl 1():A17-24. PubMed ID: 20588569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate.
    Pan A; Liu R; Sun M; Ning CZ
    ACS Nano; 2010 Feb; 4(2):671-80. PubMed ID: 20073535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the efficiency of polymer solar cells by silicon nanowires.
    Eisenhawer B; Sensfuss S; Sivakov V; Pietsch M; Andrä G; Falk F
    Nanotechnology; 2011 Aug; 22(31):315401. PubMed ID: 21727315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells.
    Wong WY; Wang XZ; He Z; Djurisić AB; Yip CT; Cheung KY; Wang H; Mak CS; Chan WK
    Nat Mater; 2007 Jul; 6(7):521-7. PubMed ID: 17496897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer nanowire/fullerene bulk heterojunction solar cells: how nanostructure determines photovoltaic properties.
    Xin H; Reid OG; Ren G; Kim FS; Ginger DS; Jenekhe SA
    ACS Nano; 2010 Apr; 4(4):1861-72. PubMed ID: 20222697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.
    Guo F; Kubis P; Li N; Przybilla T; Matt G; Stubhan T; Ameri T; Butz B; Spiecker E; Forberich K; Brabec CJ
    ACS Nano; 2014 Dec; 8(12):12632-40. PubMed ID: 25405589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.