These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21747692)

  • 1. A mitochondrial membrane exopolyphosphatase is modulated by, and plays a role in, the energy metabolism of hard tick Rhipicephalus (Boophilus) microplus embryos.
    Campos E; Façanha AR; Costa EP; Fraga A; Moraes J; da Silva Vaz I; Masuda A; Logullo C
    Int J Mol Sci; 2011; 12(6):3525-35. PubMed ID: 21747692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mitochondrial exopolyphosphatase activity modulated by phosphate demand in Rhipicephalus (Boophilus) microplus embryo.
    Campos E; Façanha A; Moraes J; da Silva Vaz I; Masuda A; Logullo C
    Insect Biochem Mol Biol; 2007 Oct; 37(10):1103-7. PubMed ID: 17785198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exopolyphosphatases in nuclear and mitochondrial fractions during embryogenesis of the hard tick Rhipicephalus (Boophilus) microplus.
    Campos E; Façanha AR; Costa EP; da Silva Vaz I; Masuda A; Logullo C
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Nov; 151(3):311-6. PubMed ID: 18706514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic polyphosphates regulate hexokinase activity and reactive oxygen species generation in mitochondria of Rhipicephalus (Boophilus) microplus embryo.
    Fraga A; Moraes J; da Silva JR; Costa EP; Menezes J; da Silva Vaz I; Logullo C; da Fonseca RN; Campos E
    Int J Biol Sci; 2013; 9(8):842-52. PubMed ID: 23983617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic polyphosphate's role in energy production and mitochondrial permeability transition pore opening in tick mitochondria.
    Domingues G; Moraes J; Fonseca RND; Campos E
    Arch Insect Biochem Physiol; 2023 Sep; 114(1):e22029. PubMed ID: 37278151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganic polyphosphates in mitochondria.
    Kulakovskaya TV; Lichko LP; Vagabov VM; Kulaev IS
    Biochemistry (Mosc); 2010 Jul; 75(7):825-31. PubMed ID: 20673205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyphosphates and exopolyphosphatases in cytosol and mitochondria of Saccharomyces cerevisiae during growth on glucose or ethanol under phosphate surplus.
    Andreeva NA; Kulakovskaya TV; Kulakovskaya EV; Kulaev IS
    Biochemistry (Mosc); 2008 Jan; 73(1):65-9. PubMed ID: 18294131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Progress in polyphosphate and related metabolizing enzymes].
    Shi TY; Wang HL; Xie JP
    Sheng Li Ke Xue Jin Zhan; 2011 Jun; 42(3):181-7. PubMed ID: 21932515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of the exopolyphosphatase (PPX) from Escherichia coli O157:H7 suggests a binding mode for long polyphosphate chains.
    Rangarajan ES; Nadeau G; Li Y; Wagner J; Hung MN; Schrag JD; Cygler M; Matte A
    J Mol Biol; 2006 Jun; 359(5):1249-60. PubMed ID: 16678853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Putative binding mode of Escherichia coli exopolyphosphatase and polyphosphates based on a hybrid in silico/biochemical approach.
    Boetsch C; Aguayo-Villegas DR; Gonzalez-Nilo FD; Lisa ÁT; Beassoni PR
    Arch Biochem Biophys; 2016 Sep; 606():64-72. PubMed ID: 27424154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of exopolyphosphatase (PPX) from Porphyromonas gingivalis in complex with substrate analogs and magnesium ions reveals the basis for polyphosphate processivity.
    Zhang A; Lu Z; Xu Y; Qi T; Li W; Zhang L; Cui Z
    J Struct Biol; 2021 Sep; 213(3):107767. PubMed ID: 34214602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles.
    Gerasimaitė R; Mayer A
    Biochem Soc Trans; 2016 Feb; 44(1):234-9. PubMed ID: 26862210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of inactivation of the PPN1 gene on exopolyphosphatases, inorganic polyphosphates and function of mitochondria in the yeast Saccharomyces cerevisiae.
    Pestov NA; Kulakovskaya TV; Kulaev IS
    FEMS Yeast Res; 2005 Jun; 5(9):823-8. PubMed ID: 15925310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The exopolyphosphatase gene from sulfolobus solfataricus: characterization of the first gene found to be involved in polyphosphate metabolism in archaea.
    Cardona ST; Chávez FP; Jerez CA
    Appl Environ Microbiol; 2002 Oct; 68(10):4812-9. PubMed ID: 12324325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct labeling of polyphosphate at the ultrastructural level in Saccharomyces cerevisiae by using the affinity of the polyphosphate binding domain of Escherichia coli exopolyphosphatase.
    Saito K; Ohtomo R; Kuga-Uetake Y; Aono T; Saito M
    Appl Environ Microbiol; 2005 Oct; 71(10):5692-701. PubMed ID: 16204477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depletion of mitochondrial inorganic polyphosphate (polyP) in mammalian cells causes metabolic shift from oxidative phosphorylation to glycolysis.
    Solesio ME; Xie L; McIntyre B; Ellenberger M; Mitaishvili E; Bhadra-Lobo S; Bettcher LF; Bazil JN; Raftery D; Jakob U; Pavlov EV
    Biochem J; 2021 Apr; 478(8):1631-1646. PubMed ID: 33843973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death.
    Abramov AY; Fraley C; Diao CT; Winkfein R; Colicos MA; Duchen MR; French RJ; Pavlov E
    Proc Natl Acad Sci U S A; 2007 Nov; 104(46):18091-6. PubMed ID: 17986607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic Polyphosphate, Exopolyphosphatase, and
    Rivero M; Torres-Paris C; Muñoz R; Cabrera R; Navarro CA; Jerez CA
    Archaea; 2018; 2018():5251061. PubMed ID: 29692683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of phosphate polymer polyP enhances lactic fermentation in mice.
    Nakamura A; Kawano N; Motomura K; Kuroda A; Sekiguchi K; Miyado M; Kang W; Miyamoto Y; Hanai M; Iwai M; Yamada M; Hamatani T; Saito T; Saito H; Tanaka M; Umezawa A; Miyado K
    Genes Cells; 2018 Oct; 23(10):904-914. PubMed ID: 30144248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli.
    Grillo-Puertas M; Schurig-Briccio LA; Rodríguez-Montelongo L; Rintoul MR; Rapisarda VA
    BMC Microbiol; 2014 Mar; 14():72. PubMed ID: 24645672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.