These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 2174775)
1. The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase--cytochrome-c552 redox complex. Richardson DJ; McEwan AG; Page MD; Jackson JB; Ferguson SJ Eur J Biochem; 1990 Nov; 194(1):263-70. PubMed ID: 2174775 [TBL] [Abstract][Full Text] [Related]
2. Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro. Correlation with photoinhibition studies. Richardson DJ; Bell LC; McEwan AG; Jackson JB; Ferguson SJ Eur J Biochem; 1991 Aug; 199(3):677-83. PubMed ID: 1651241 [TBL] [Abstract][Full Text] [Related]
3. Identification of nitric oxide reductase activity in Rhodobacter capsulatus: the electron transport pathway can either use or bypass both cytochrome c2 and the cytochrome bc1 complex. Bell LC; Richardson DJ; Ferguson SJ J Gen Microbiol; 1992 Mar; 138(3):437-43. PubMed ID: 1317404 [TBL] [Abstract][Full Text] [Related]
4. Electron transport pathways to nitrous oxide in Rhodobacter species. Richardson DJ; McEwan AG; Jackson JB; Ferguson SJ Eur J Biochem; 1989 Nov; 185(3):659-69. PubMed ID: 2556273 [TBL] [Abstract][Full Text] [Related]
5. The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein. Blasco R; Castillo F; Martínez-Luque M FEBS Lett; 1997 Sep; 414(1):45-9. PubMed ID: 9305729 [TBL] [Abstract][Full Text] [Related]
6. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Berks BC; Richardson DJ; Robinson C; Reilly A; Aplin RT; Ferguson SJ Eur J Biochem; 1994 Feb; 220(1):117-24. PubMed ID: 8119278 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of photosynthetic electron transfer in artificial vesicles reconstituted with purified complexes from Rhodobacter capsulatus. II. Direct electron transfer between the reaction center and the bc1 complex and role of cytochrome c2. Venturoli G; Gabellini N; Oesterhelt D; Melandri BA Eur J Biochem; 1990 Apr; 189(1):95-103. PubMed ID: 2158893 [TBL] [Abstract][Full Text] [Related]
8. The membrane-bound cytochrome cy of Rhodobacter capsulatus can serve as an electron donor to the photosynthetic reaction of Rhodobacter sphaeroides. Jenney FE; Prince RC; Daldal F Biochim Biophys Acta; 1996 Feb; 1273(2):159-64. PubMed ID: 8611589 [TBL] [Abstract][Full Text] [Related]
9. Characterization of DorC from Rhodobacter capsulatus, a c-type cytochrome involved in electron transfer to dimethyl sulfoxide reductase. Shaw AL; Hochkoeppler A; Bonora P; Zannoni D; Hanson GR; McEwan AG J Biol Chem; 1999 Apr; 274(15):9911-4. PubMed ID: 10187763 [TBL] [Abstract][Full Text] [Related]
10. Redox properties of membrane-bound b-type cytochromes and a soluble c-type cytochrome of nitrate reductase in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. Yokota S; Urata K; Satoh T J Biochem; 1984 Jun; 95(6):1535-41. PubMed ID: 6088470 [TBL] [Abstract][Full Text] [Related]
11. Membrane-anchored cytochrome cy mediated microsecond time range electron transfer from the cytochrome bc1 complex to the reaction center in Rhodobacter capsulatus. Myllykallio H; Drepper F; Mathis P; Daldal F Biochemistry; 1998 Apr; 37(16):5501-10. PubMed ID: 9548933 [TBL] [Abstract][Full Text] [Related]
12. Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a CuA center. Gray KA; Grooms M; Myllykallio H; Moomaw C; Slaughter C; Daldal F Biochemistry; 1994 Mar; 33(10):3120-7. PubMed ID: 8130227 [TBL] [Abstract][Full Text] [Related]
13. Membrane-associated cytochrome cy of Rhodobacter capsulatus is an electron carrier from the cytochrome bc1 complex to the cytochrome c oxidase during respiration. Hochkoeppler A; Jenney FE; Lang SE; Zannoni D; Daldal F J Bacteriol; 1995 Feb; 177(3):608-13. PubMed ID: 7836293 [TBL] [Abstract][Full Text] [Related]
15. Electron transport components involved in hydrogen oxidation in free-living Rhizobium japonicum. O'Brian MR; Maier RJ J Bacteriol; 1982 Oct; 152(1):422-30. PubMed ID: 6288665 [TBL] [Abstract][Full Text] [Related]
16. Rhodobacter capsulatus CycH: a bipartite gene product with pleiotropic effects on the biogenesis of structurally different c-type cytochromes. Lang SE; Jenney FE; Daldal F J Bacteriol; 1996 Sep; 178(17):5279-90. PubMed ID: 8752349 [TBL] [Abstract][Full Text] [Related]
17. The respiratory nitrate reductase from Paracoccus denitrificans. Molecular characterisation and kinetic properties. Craske A; Ferguson SJ Eur J Biochem; 1986 Jul; 158(2):429-36. PubMed ID: 3732277 [TBL] [Abstract][Full Text] [Related]
18. The interaction between cytochrome c2 and the cytochrome bc1 complex in the photosynthetic purple bacteria Rhodobacter capsulatus and Rhodopseudomonas viridis. Güner S; Willie A; Millett F; Caffrey MS; Cusanovich MA; Robertson DE; Knaff DB Biochemistry; 1993 May; 32(18):4793-800. PubMed ID: 8387815 [TBL] [Abstract][Full Text] [Related]
19. Interaction between cytochrome c2 and reaction centers from purple bacteria. Wang S; Li X; Williams JC; Allen JP; Mathis P Biochemistry; 1994 Jul; 33(27):8306-12. PubMed ID: 8031763 [TBL] [Abstract][Full Text] [Related]
20. Cytochrome c2 mutants of Rhodobacter capsulatus. Caffrey M; Davidson E; Cusanovich M; Daldal F Arch Biochem Biophys; 1992 Feb; 292(2):419-26. PubMed ID: 1309972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]