These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21747760)

  • 1. Neighboring Pallidal Neurons Do Not Exhibit more Synchronous Oscillations than Remote Ones in the MPTP Primate Model of Parkinson's Disease.
    Mitelman R; Rosin B; Zadka H; Slovik M; Heimer G; Ritov Y; Bergman H; Elias S
    Front Syst Neurosci; 2011; 5():54. PubMed ID: 21747760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional correlations between neighboring neurons in the primate globus pallidus are weak or nonexistent.
    Bar-Gad I; Heimer G; Ritov Y; Bergman H
    J Neurosci; 2003 May; 23(10):4012-6. PubMed ID: 12764086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism.
    Heimer G; Bar-Gad I; Goldberg JA; Bergman H
    J Neurosci; 2002 Sep; 22(18):7850-5. PubMed ID: 12223537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease.
    Goldberg JA; Boraud T; Maraton S; Haber SN; Vaadia E; Bergman H
    J Neurosci; 2002 Jun; 22(11):4639-53. PubMed ID: 12040070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersed activity during passive movement in the globus pallidus of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated primate.
    Erez Y; Tischler H; Belelovsky K; Bar-Gad I
    PLoS One; 2011 Jan; 6(1):e16293. PubMed ID: 21267415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism.
    Raz A; Vaadia E; Bergman H
    J Neurosci; 2000 Nov; 20(22):8559-71. PubMed ID: 11069964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronized Beta-Band Oscillations in a Model of the Globus Pallidus-Subthalamic Nucleus Network under External Input.
    Ahn S; Zauber SE; Worth RM; Rubchinsky LL
    Front Comput Neurosci; 2016; 10():134. PubMed ID: 28066222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pallidal stimulation suppresses pathological dysrhythmia in the parkinsonian motor cortex.
    McCairn KW; Turner RS
    J Neurophysiol; 2015 Apr; 113(7):2537-48. PubMed ID: 25652922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational physiology of the basal ganglia in Parkinson's disease.
    Rivlin-Etzion M; Elias S; Heimer G; Bergman H
    Prog Brain Res; 2010; 183():259-73. PubMed ID: 20696324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism.
    Bergman H; Wichmann T; Karmon B; DeLong MR
    J Neurophysiol; 1994 Aug; 72(2):507-20. PubMed ID: 7983515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism.
    Nini A; Feingold A; Slovin H; Bergman H
    J Neurophysiol; 1995 Oct; 74(4):1800-5. PubMed ID: 8989416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations.
    McCairn KW; Turner RS
    J Neurophysiol; 2009 Apr; 101(4):1941-60. PubMed ID: 19164104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Failure in identification of overlapping spikes from multiple neuron activity causes artificial correlations.
    Bar-Gad I; Ritov Y; Vaadia E; Bergman H
    J Neurosci Methods; 2001 May; 107(1-2):1-13. PubMed ID: 11389936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation transfer from basal ganglia to thalamus in Parkinson's disease.
    Reitsma P; Doiron B; Rubin J
    Front Comput Neurosci; 2011; 5():58. PubMed ID: 22355287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons.
    Edgerton JR; Jaeger D
    J Neurosci; 2011 Jul; 31(30):10919-36. PubMed ID: 21795543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological changes in the pallidum in a progressive model of Parkinson's disease: Are oscillations enough?
    Muralidharan A; Jensen AL; Connolly A; Hendrix CM; Johnson MD; Baker KB; Vitek JL
    Exp Neurol; 2016 May; 279():187-196. PubMed ID: 26946223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia.
    Tachibana Y; Iwamuro H; Kita H; Takada M; Nambu A
    Eur J Neurosci; 2011 Nov; 34(9):1470-84. PubMed ID: 22034978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Model of Recurrent Subthalamo-Pallidal Circuit for Generation of Parkinsonian Oscillations.
    Shouno O; Tachibana Y; Nambu A; Doya K
    Front Neuroanat; 2017; 11():21. PubMed ID: 28377699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of pallidal and striatal tonically active neurons is correlated in mptp-treated monkeys but not in normal monkeys.
    Raz A; Frechter-Mazar V; Feingold A; Abeles M; Vaadia E; Bergman H
    J Neurosci; 2001 Feb; 21(3):RC128. PubMed ID: 11157099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow oscillatory discharge in the primate basal ganglia.
    Wichmann T; Kliem MA; Soares J
    J Neurophysiol; 2002 Feb; 87(2):1145-8. PubMed ID: 11826081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.