These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 2174811)
1. Nucleotide sequence and analysis of the Vibrio alginolyticus sucrose uptake-encoding region. Blatch GL; Scholle RR; Woods DR Gene; 1990 Oct; 95(1):17-23. PubMed ID: 2174811 [TBL] [Abstract][Full Text] [Related]
2. Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. Sato Y; Poy F; Jacobson GR; Kuramitsu HK J Bacteriol; 1989 Jan; 171(1):263-71. PubMed ID: 2536656 [TBL] [Abstract][Full Text] [Related]
3. Isolation, characterization and sequence analysis of the scrK gene encoding fructokinase of Streptococcus mutans. Sato Y; Yamamoto Y; Kizaki H; Kuramitsu HK J Gen Microbiol; 1993 May; 139(5):921-7. PubMed ID: 8336109 [TBL] [Abstract][Full Text] [Related]
4. Nucleotide sequence and analysis of the Vibrio alginolyticus sucrase gene (scrB). Scholle RR; Robb SM; Robb FT; Woods DR Gene; 1989 Aug; 80(1):49-56. PubMed ID: 2551785 [TBL] [Abstract][Full Text] [Related]
5. Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme II Scr of the phosphotransferase system and a sucrose-6-phosphate invertase. Titgemeyer F; Jahreis K; Ebner R; Lengeler JW Mol Gen Genet; 1996 Feb; 250(2):197-206. PubMed ID: 8628219 [TBL] [Abstract][Full Text] [Related]
6. Sequence analysis of scrA and scrB from Streptococcus sobrinus 6715. Chen YY; Lee LN; LeBlanc DJ Infect Immun; 1993 Jun; 61(6):2602-10. PubMed ID: 8500898 [TBL] [Abstract][Full Text] [Related]
7. Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Aulkemeyer P; Ebner R; Heilenmann G; Jahreis K; Schmid K; Wrieden S; Lengeler JW Mol Microbiol; 1991 Dec; 5(12):2913-22. PubMed ID: 1809835 [TBL] [Abstract][Full Text] [Related]
8. Cloning and characterization of the scrA gene encoding the sucrose-specific Enzyme II of the phosphotransferase system from Staphylococcus xylosus. Wagner E; Götz F; Brückner R Mol Gen Genet; 1993 Oct; 241(1-2):33-41. PubMed ID: 8232209 [TBL] [Abstract][Full Text] [Related]
9. Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Schmid K; Ebner R; Altenbuchner J; Schmitt R; Lengeler JW Mol Microbiol; 1988 Jan; 2(1):1-8. PubMed ID: 2835584 [TBL] [Abstract][Full Text] [Related]
10. The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon. Reid SJ; Rafudeen MS; Leat NG Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1461-1472. PubMed ID: 10411273 [TBL] [Abstract][Full Text] [Related]
11. Construction of scrA::lacZ gene fusions to investigate regulation of the sucrose PTS of Streptococcus mutans. Sato Y; Yamamoto Y; Suzuki R; Kizaki H; Kuramitsu HK FEMS Microbiol Lett; 1991 Apr; 63(2-3):339-45. PubMed ID: 1905660 [TBL] [Abstract][Full Text] [Related]
12. Purification and properties of fructokinase I from Lactococcus lactis. Localization of scrK on the sucrose-nisin transposon Tn5306. Thompson J; Sackett DL; Donkersloot JA J Biol Chem; 1991 Nov; 266(33):22626-33. PubMed ID: 1658003 [TBL] [Abstract][Full Text] [Related]
13. Nucleotide sequence and analysis of the Vibrio alginolyticus scr repressor-encoding gene (scrR). Blatch GL; Woods DR Gene; 1991 May; 101(1):45-50. PubMed ID: 2060795 [TBL] [Abstract][Full Text] [Related]
14. Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. Bogs J; Geider K J Bacteriol; 2000 Oct; 182(19):5351-8. PubMed ID: 10986236 [TBL] [Abstract][Full Text] [Related]
15. Nucleotide sequence of the Vibrio alginolyticus calcium-dependent, detergent-resistant alkaline serine exoprotease A. Deane SM; Robb FT; Robb SM; Woods DR Gene; 1989; 76(2):281-8. PubMed ID: 2546861 [TBL] [Abstract][Full Text] [Related]
16. Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. Fouet A; Arnaud M; Klier A; Rapoport G Proc Natl Acad Sci U S A; 1987 Dec; 84(24):8773-7. PubMed ID: 3122206 [TBL] [Abstract][Full Text] [Related]
17. Isolation, characterization, and nucleotide sequence of the Streptococcus mutans mannitol-phosphate dehydrogenase gene and the mannitol-specific factor III gene of the phosphoenolpyruvate phosphotransferase system. Honeyman AL; Curtiss R Infect Immun; 1992 Aug; 60(8):3369-75. PubMed ID: 1322373 [TBL] [Abstract][Full Text] [Related]
18. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. Le Coq D; Lindner C; Krüger S; Steinmetz M; Stülke J J Bacteriol; 1995 Mar; 177(6):1527-35. PubMed ID: 7883710 [TBL] [Abstract][Full Text] [Related]
19. Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH and the 5'-end of ptsI and evidence for a ptsHI operon. Gonzy-Tréboul G; Zagorec M; Rain-Guion MC; Steinmetz M Mol Microbiol; 1989 Jan; 3(1):103-12. PubMed ID: 2497294 [TBL] [Abstract][Full Text] [Related]
20. Partial nucleotide sequence of the pts operon in Salmonella typhimurium: comparative analyses in five bacterial genera. Schnierow BJ; Yamada M; Saier MH Mol Microbiol; 1989 Jan; 3(1):113-8. PubMed ID: 2497295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]