BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21748635)

  • 1. A nanoparticle for tumor targeted delivery of oligomers.
    Liu X; Wang Y; Hnatowich DJ
    Methods Mol Biol; 2011; 764():91-105. PubMed ID: 21748635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell studies of a three-component antisense MORF/tat/Herceptin nanoparticle designed for improved tumor delivery.
    Liu X; Wang Y; Nakamura K; Kubo A; Hnatowich DJ
    Cancer Gene Ther; 2008 Feb; 15(2):126-32. PubMed ID: 18084241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified preparation via streptavidin of antisense oligomers/carriers nanoparticles showing improved cellular delivery in culture.
    Wang Y; Nakamura K; Liu X; Kitamura N; Kubo A; Hnatowich DJ
    Bioconjug Chem; 2007; 18(4):1338-43. PubMed ID: 17605463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auger-mediated cytotoxicity of cancer cells in culture by an 125I-antisense oligomer delivered as a three-component streptavidin nanoparticle.
    Liu X; Nakamura K; Wang Y; Cheng D; Liang M; Xiao N; Chen L; Rusckowski M; Hnatowich DJ
    J Biomed Nanotechnol; 2010 Apr; 6(2):153-7. PubMed ID: 20738069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auger radiation-induced, antisense-mediated cytotoxicity of tumor cells using a 3-component streptavidin-delivery nanoparticle with 111In.
    Liu X; Wang Y; Nakamura K; Kawauchi S; Akalin A; Cheng D; Chen L; Rusckowski M; Hnatowich DJ
    J Nucl Med; 2009 Apr; 50(4):582-90. PubMed ID: 19289423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor delivery of antisense oligomer using trastuzumab within a streptavidin nanoparticle.
    Wang Y; Liu X; Chen L; Cheng D; Rusckowski M; Hnatowich DJ
    Eur J Nucl Med Mol Imaging; 2009 Dec; 36(12):1977-86. PubMed ID: 19572130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the intracellular fate of components within a noncovalent streptavidin nanoparticle with covalent conjugation.
    Liu Y; Cheng D; Liu X; Liu G; Dou S; Xiao N; Chen L; Rusckowski M; Hnatowich DJ
    Nucl Med Biol; 2012 Jan; 39(1):101-7. PubMed ID: 21958854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo delivery of antisense MORF oligomer by MORF/carrier streptavidin nanoparticles.
    Wang Y; Liu X; Nakamura K; Chen L; Rusckowski M; Hnatowich DJ
    Cancer Biother Radiopharm; 2009 Oct; 24(5):573-8. PubMed ID: 19877887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Her2/neu small interfering RNA delivered in culture by a streptavidin nanoparticle.
    Liu X; Nakamura K; Cheng D; Peng C; Xiao N; Liu Y; Chen L; Rusckowski M; Hnatowich DJ
    Curr Drug Deliv; 2012 Jul; 9(4):431-6. PubMed ID: 22520071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell culture and xenograft-bearing animal studies of radiolabeled antisense DNA carrier nanoparticles with streptavidin as a linker.
    Nakamura K; Wang Y; Liu X; Kubo A; Hnatowich DJ
    J Nucl Med; 2007 Nov; 48(11):1845-52. PubMed ID: 17978353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery.
    Crombez L; Morris MC; Heitz F; Divita G
    Methods Mol Biol; 2011; 764():59-73. PubMed ID: 21748633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide.
    Tan M; Lan KH; Yao J; Lu CH; Sun M; Neal CL; Lu J; Yu D
    Cancer Res; 2006 Apr; 66(7):3764-72. PubMed ID: 16585203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors determining the efficacy of nuclear delivery of antisense oligonucleotides by gold nanoparticles.
    Liu Y; Franzen S
    Bioconjug Chem; 2008 May; 19(5):1009-16. PubMed ID: 18393455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting HER2+ breast cancer cells: lysosomal accumulation of anti-HER2 antibodies is influenced by antibody binding site and conjugation to polymeric nanoparticles.
    Owen SC; Patel N; Logie J; Pan G; Persson H; Moffat J; Sidhu SS; Shoichet MS
    J Control Release; 2013 Dec; 172(2):395-404. PubMed ID: 23880472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting trastuzumab-resistant breast cancer cells with a lentivirus engineered to bind antibodies that recognize HER-2.
    Zhang KX; Kim C; Chow E; Chen IS; Jia W; Rennie PS
    Breast Cancer Res Treat; 2011 Jan; 125(1):89-97. PubMed ID: 20232140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-penetrating peptides and peptide nucleic acid-coupled MRI contrast agents: evaluation of cellular delivery and target binding.
    Mishra R; Su W; Pohmann R; Pfeuffer J; Sauer MG; Ugurbil K; Engelmann J
    Bioconjug Chem; 2009 Oct; 20(10):1860-8. PubMed ID: 19788302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles.
    Lee AL; Wang Y; Cheng HY; Pervaiz S; Yang YY
    Biomaterials; 2009 Feb; 30(5):919-27. PubMed ID: 19042015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Five-step process for screening antisense compounds for efficacy: gene target IL-12Rb2.
    Marshall NB; Hauck LL; Mourich DV
    Methods Mol Biol; 2011; 764():153-68. PubMed ID: 21748639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting human epidermal growth factor receptor 2 by a cell-penetrating peptide-affibody bioconjugate.
    Govindarajan S; Sivakumar J; Garimidi P; Rangaraj N; Kumar JM; Rao NM; Gopal V
    Biomaterials; 2012 Mar; 33(8):2570-82. PubMed ID: 22192536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer.
    Sun B; Ranganathan B; Feng SS
    Biomaterials; 2008 Feb; 29(4):475-86. PubMed ID: 17953985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.