These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21748803)

  • 21. Study of pK values and effective dielectric constants of ionizable residues in pentapeptides and in staphylococcal nuclease (SNase) using a mean-field approach.
    Bossa GV; Fahr A; Pereira de Souza T
    J Phys Chem B; 2014 Apr; 118(15):4053-61. PubMed ID: 24708515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A buried lysine that titrates with a normal pKa: role of conformational flexibility at the protein-water interface as a determinant of pKa values.
    Harms MJ; Schlessman JL; Chimenti MS; Sue GR; Damjanović A; García-Moreno B
    Protein Sci; 2008 May; 17(5):833-45. PubMed ID: 18369193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural origins of high apparent dielectric constants experienced by ionizable groups in the hydrophobic core of a protein.
    Chimenti MS; Castañeda CA; Majumdar A; García-Moreno E B
    J Mol Biol; 2011 Jan; 405(2):361-77. PubMed ID: 21059359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational consequences of ionization of Lys, Asp, and Glu buried at position 66 in staphylococcal nuclease.
    Karp DA; Stahley MR; García-Moreno B
    Biochemistry; 2010 May; 49(19):4138-46. PubMed ID: 20329780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The high dielectric constant of staphylococcal nuclease is encoded in its structural architecture.
    Goh GB; García-Moreno E B; Brooks CL
    J Am Chem Soc; 2011 Dec; 133(50):20072-5. PubMed ID: 22085022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-Dependent Conformational Changes Due to Ionizable Residues in a Hydrophobic Protein Interior: The Study of L25K and L125K Variants of SNase.
    Sarkar A; Gupta PL; Roitberg AE
    J Phys Chem B; 2019 Jul; 123(27):5742-5754. PubMed ID: 31260304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Charges in Hydrophobic Environments: A Strategy for Identifying Alternative States in Proteins.
    Robinson AC; Majumdar A; Schlessman JL; García-Moreno E B
    Biochemistry; 2017 Jan; 56(1):212-218. PubMed ID: 28009501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of mutations involving charged residues on the stability of staphylococcal nuclease: a continuum electrostatics study.
    Börjesson U; Hünenberger PH
    Protein Eng; 2003 Nov; 16(11):831-40. PubMed ID: 14631072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progress in the prediction of pKa values in proteins.
    Alexov E; Mehler EL; Baker N; Baptista AM; Huang Y; Milletti F; Nielsen JE; Farrell D; Carstensen T; Olsson MH; Shen JK; Warwicker J; Williams S; Word JM
    Proteins; 2011 Dec; 79(12):3260-75. PubMed ID: 22002859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray and thermodynamic studies of staphylococcal nuclease variants I92E and I92K: insights into polarity of the protein interior.
    Nguyen DM; Leila Reynald R; Gittis AG; Lattman EE
    J Mol Biol; 2004 Aug; 341(2):565-74. PubMed ID: 15276844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uncovering pH-dependent transient states of proteins with buried ionizable residues.
    Goh GB; Laricheva EN; Brooks CL
    J Am Chem Soc; 2014 Jun; 136(24):8496-9. PubMed ID: 24842060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.
    Wang L; Li L; Alexov E
    Proteins; 2015 Dec; 83(12):2186-97. PubMed ID: 26408449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histidine in continuum electrostatics protonation state calculations.
    Couch V; Stuchebrukhov A
    Proteins; 2011 Dec; 79(12):3410-9. PubMed ID: 22072521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Coupled Ionization-Conformational Equilibrium Is Required To Understand the Properties of Ionizable Residues in the Hydrophobic Interior of Staphylococcal Nuclease.
    Liu J; Swails J; Zhang JZH; He X; Roitberg AE
    J Am Chem Soc; 2018 Feb; 140(5):1639-1648. PubMed ID: 29308643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein.
    Robinson AC; Castañeda CA; Schlessman JL; García-Moreno EB
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11685-90. PubMed ID: 25074910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH-Dependent Conformational Changes Lead to a Highly Shifted p
    Sarkar A; Roitberg AE
    J Phys Chem B; 2020 Dec; 124(49):11072-11080. PubMed ID: 33259714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arginine residues at internal positions in a protein are always charged.
    Harms MJ; Schlessman JL; Sue GR; García-Moreno B
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):18954-9. PubMed ID: 22080604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large shifts in pKa values of lysine residues buried inside a protein.
    Isom DG; Castañeda CA; Cannon BR; García-Moreno B
    Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5260-5. PubMed ID: 21389271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.