These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 21749069)

  • 1. Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips.
    Martin-Sampedro R; Capanema EA; Hoeger I; Villar JC; Rojas OJ
    J Agric Food Chem; 2011 Aug; 59(16):8761-9. PubMed ID: 21749069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of steam explosion and laccase-mediator treatments prior to Eucalyptus globulus kraft pulping.
    Martín-Sampedro R; Eugenio ME; Carbajo JM; Villar JC
    Bioresour Technol; 2011 Jul; 102(14):7183-9. PubMed ID: 21570827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biobleaching of Eucalyptus globulus kraft pulps: comparison between pulps obtained from exploded and non-exploded chips.
    Martín-Sampedro R; Eugenio ME; Villar JC
    Bioresour Technol; 2011 Mar; 102(6):4530-5. PubMed ID: 21256741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin isolated from steam-exploded eucalyptus wood chips by phase separation and its affinity to Trichoderma reesei cellulase.
    Nonaka H; Kobayashi A; Funaoka M
    Bioresour Technol; 2013 Jul; 140():431-4. PubMed ID: 23711881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated hot-compressed water and laccase-mediator treatments of Eucalyptus grandis fibers: structural changes of fiber and lignin.
    Wu JQ; Wen JL; Yuan TQ; Sun RC
    J Agric Food Chem; 2015 Feb; 63(6):1763-72. PubMed ID: 25639522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks.
    Gutiérrez A; Rencoret J; Cadena EM; Rico A; Barth D; del Río JC; Martínez AT
    Bioresour Technol; 2012 Sep; 119():114-22. PubMed ID: 22728191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of residual lignin after SO(2)-catalyzed steam explosion and enzymatic hydrolysis of Eucalyptus viminalis wood chips.
    Ramos LP; Mathias AL; Silva FT; Cotrim AR; Ferraz AL; Chen CL
    J Agric Food Chem; 1999 Jun; 47(6):2295-302. PubMed ID: 10794625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of arylglycerol-beta-aryl ether linkages in enzymatic mild acidolysis lignins (EMAL): comparison of DFRC/(31)P NMR with thioacidolysis.
    Guerra A; Norambuena M; Freer J; Argyropoulos DS
    J Nat Prod; 2008 May; 71(5):836-41. PubMed ID: 18419155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral characterization of eucalyptus wood.
    Popescu CM; Popescu MC; Singurel G; Vasile C; Argyropoulos DS; Willfor S
    Appl Spectrosc; 2007 Nov; 61(11):1168-77. PubMed ID: 18028695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [FTIR spectra analysis of the reactive activity of lignin when modified by laccase].
    Qiu WH; Chen HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1501-5. PubMed ID: 18844148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion.
    Li J; Henriksson G; Gellerstedt G
    Bioresour Technol; 2007 Nov; 98(16):3061-8. PubMed ID: 17141499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.
    Martin-Sampedro R; Eugenio ME; Moreno JA; Revilla E; Villar JC
    Bioresour Technol; 2014 Feb; 153():236-44. PubMed ID: 24368272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of three lignin isolation protocols for various wood species.
    Guerra A; Filpponen I; Lucia LA; Argyropoulos DS
    J Agric Food Chem; 2006 Dec; 54(26):9696-705. PubMed ID: 17177489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment.
    Brito JO; Silva FG; Leão MM; Almeida G
    Bioresour Technol; 2008 Dec; 99(18):8545-8. PubMed ID: 18586488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals.
    Li J; Gellerstedt G; Toven K
    Bioresour Technol; 2009 May; 100(9):2556-61. PubMed ID: 19157871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy.
    Capanema EA; Balakshin MY; Kadla JF
    J Agric Food Chem; 2005 Dec; 53(25):9639-49. PubMed ID: 16332110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.
    Martin-Sampedro R; Revilla E; Villar JC; Eugenio ME
    Bioresour Technol; 2014 Sep; 167():186-91. PubMed ID: 24980031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of operating parameters on the biodelignification of Eucalyptus globulus kraft pulps in a laccase--violuric acid system.
    Oudia A; Queiroz J; Simões R
    Appl Biochem Biotechnol; 2008 Apr; 149(1):23-32. PubMed ID: 18350384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass.
    Sawada T; Nakamura Y; Kobayashi F; Kuwahara M; Watanabe T
    Biotechnol Bioeng; 1995 Dec; 48(6):719-24. PubMed ID: 18623542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin composition and structure in young versus adult Eucalyptus globulus plants.
    Rencoret J; Gutiérrez A; Nieto L; Jiménez-Barbero J; Faulds CB; Kim H; Ralph J; Martínez AT; Del Río JC
    Plant Physiol; 2011 Feb; 155(2):667-82. PubMed ID: 21098672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.