These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 21749397)
1. Photodynamic action of Rose Bengal silica nanoparticle complex on breast and oral cancer cell lines. Uppal A; Jain B; Gupta PK; Das K Photochem Photobiol; 2011; 87(5):1146-51. PubMed ID: 21749397 [TBL] [Abstract][Full Text] [Related]
2. In vitro photodynamic activity of chloro(5,10,15,20-tetraphenylporphyrinato)indium(III) loaded-poly(lactide-co-glycolide) nanoparticles in LNCaP prostate tumour cells. da Silva AR; Inada NM; Rettori D; Baratti MO; Vercesi AE; Jorge RA J Photochem Photobiol B; 2009 Feb; 94(2):101-12. PubMed ID: 19070504 [TBL] [Abstract][Full Text] [Related]
3. An efficient rose bengal based nanoplatform for photodynamic therapy. Gianotti E; Martins Estevão B; Cucinotta F; Hioka N; Rizzi M; Renò F; Marchese L Chemistry; 2014 Aug; 20(35):10921-5. PubMed ID: 25116185 [TBL] [Abstract][Full Text] [Related]
5. Heavy-atomic construction of photosensitizer nanoparticles for enhanced photodynamic therapy of cancer. Lim CK; Shin J; Lee YD; Kim J; Park H; Kwon IC; Kim S Small; 2011 Jan; 7(1):112-8. PubMed ID: 21132707 [TBL] [Abstract][Full Text] [Related]
6. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Lee SJ; Koo H; Lee DE; Min S; Lee S; Chen X; Choi Y; Leary JF; Park K; Jeong SY; Kwon IC; Kim K; Choi K Biomaterials; 2011 Jun; 32(16):4021-9. PubMed ID: 21376388 [TBL] [Abstract][Full Text] [Related]
7. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. Roy I; Ohulchanskyy TY; Pudavar HE; Bergey EJ; Oseroff AR; Morgan J; Dougherty TJ; Prasad PN J Am Chem Soc; 2003 Jul; 125(26):7860-5. PubMed ID: 12823004 [TBL] [Abstract][Full Text] [Related]
8. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines. Dabrzalska M; Janaszewska A; Zablocka M; Mignani S; Majoral JP; Klajnert-Maculewicz B Mol Pharm; 2017 May; 14(5):1821-1830. PubMed ID: 28350966 [TBL] [Abstract][Full Text] [Related]
9. Photosensitiser functionalised luminescent upconverting nanoparticles for efficient photodynamic therapy of breast cancer cells. Buchner M; García Calavia P; Muhr V; Kröninger A; Baeumner AJ; Hirsch T; Russell DA; Marín MJ Photochem Photobiol Sci; 2019 Jan; 18(1):98-109. PubMed ID: 30328457 [TBL] [Abstract][Full Text] [Related]
10. Effect of pH on uptake and photodynamic action of chlorin p6 on human colon and breast adenocarcinoma cell lines. Sharma M; Dube A; Bansal H; Kumar Gupta P Photochem Photobiol Sci; 2004 Feb; 3(2):231-5. PubMed ID: 14872242 [TBL] [Abstract][Full Text] [Related]
11. Effects of polyallylamine-coated nanoparticles on the optical and photochemical properties of rose bengal. Lin KY; Tsay YG; Chang CA J Chin Med Assoc; 2022 Sep; 85(9):901-908. PubMed ID: 35666599 [TBL] [Abstract][Full Text] [Related]
12. Photophysicochemical and photodynamic therapy properties of metallophthalocyanines linked to gold speckled silica nanoparticles. Dube E; Oluwole DO; Njemuwa N; Prinsloo E; Nyokong T Photodiagnosis Photodyn Ther; 2019 Mar; 25():325-333. PubMed ID: 30658105 [TBL] [Abstract][Full Text] [Related]
13. Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker. Lee J; Park J; Singha K; Kim WJ Chem Commun (Camb); 2013 Feb; 49(15):1545-7. PubMed ID: 23325385 [TBL] [Abstract][Full Text] [Related]
14. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Tang W; Xu H; Kopelman R; Philbert MA Photochem Photobiol; 2005; 81(2):242-9. PubMed ID: 15595888 [TBL] [Abstract][Full Text] [Related]
15. A new naturally derived photosensitizer and its phototoxicity on head and neck cancer cells. Lim SH; Lee HB; Ho AS Photochem Photobiol; 2011; 87(5):1152-8. PubMed ID: 21534974 [TBL] [Abstract][Full Text] [Related]
16. Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Gary-Bobo M; Mir Y; Rouxel C; Brevet D; Basile I; Maynadier M; Vaillant O; Mongin O; Blanchard-Desce M; Morère A; Garcia M; Durand JO; Raehm L Angew Chem Int Ed Engl; 2011 Nov; 50(48):11425-9. PubMed ID: 21976357 [No Abstract] [Full Text] [Related]
17. Non-Polymeric Nanogels as Versatile Nanocarriers: Intracellular Transport of the Photosensitizers Rose Bengal and Hypericin for Photodynamic Therapy. Torres-Martínez A; Bedrina B; Falomir E; Marín MJ; Angulo-Pachón CA; Galindo F; Miravet JF ACS Appl Bio Mater; 2021 Apr; 4(4):3658-3669. PubMed ID: 35014451 [TBL] [Abstract][Full Text] [Related]
18. Magnetic and pH dual-responsive mesoporous silica nanocomposites for effective and low-toxic photodynamic therapy. Zhan J; Ma Z; Wang D; Li X; Li X; Le L; Kang A; Hu P; She L; Yang F Int J Nanomedicine; 2017; 12():2733-2748. PubMed ID: 28442903 [TBL] [Abstract][Full Text] [Related]
19. pH-dependent complexation of hydroxypropyl-beta-cyclodextrin with chlorin e6: effect on solubility and aggregation in relation to photodynamic efficacy. Paul S; Heng PW; Chan LW J Pharm Pharmacol; 2016 Apr; 68(4):439-49. PubMed ID: 26946047 [TBL] [Abstract][Full Text] [Related]
20. In Search of a Phosphorus Dendrimer-Based Carrier of Rose Bengal: Tyramine Linker Limits Fluorescent and Phototoxic Properties of a Photosensitizer. Sztandera K; Marcinkowska M; Gorzkiewicz M; Janaszewska A; Laurent R; Zabłocka M; Mignani S; Majoral JP; Klajnert-Maculewicz B Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32585884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]