BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 21749412)

  • 1. Safety-enhanced optimal control of turbodynamic blood pumps.
    Gwak KW; Antaki JF; Paden BE; Kang B
    Artif Organs; 2011 Jul; 35(7):725-32. PubMed ID: 21749412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of extremum seeking control to turbodynamic blood pumps.
    Gwak KW
    ASAIO J; 2007; 53(4):403-9. PubMed ID: 17667222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic controller for left ventricular assist device based on pulsatility ratio.
    Choi S; Boston JR; Antaki JF
    Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An anti-suction control for an intra-aorta pump using blood assistant index: a numerical simulation.
    Gao B; Gu K; Zeng Y; Chang Y
    Artif Organs; 2012 Mar; 36(3):275-82. PubMed ID: 21951205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronized pulsatile speed control of turbodynamic left ventricular assist devices: review and prospects.
    Amacher R; Ochsner G; Schmid Daners M
    Artif Organs; 2014 Oct; 38(10):867-75. PubMed ID: 24404879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of parameter variations on the hemodynamic response under rotary blood pump assistance.
    Lim E; Dokos S; Salamonsen RF; Rosenfeldt FL; Ayre PJ; Lovell NH
    Artif Organs; 2012 May; 36(5):E125-37. PubMed ID: 22489771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.
    Arndt A; Nüsser P; Graichen K; Müller J; Lampe B
    Artif Organs; 2008 Oct; 32(10):761-71. PubMed ID: 18959664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for control of an implantable rotary blood pump for heart failure patients using noninvasive measurements.
    Lim E; Alomari AH; Savkin AV; Dokos S; Fraser JF; Timms DL; Mason DG; Lovell NH
    Artif Organs; 2011 Aug; 35(8):E174-80. PubMed ID: 21843286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a suction detection system for axial blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2004 Aug; 28(8):709-16. PubMed ID: 15270952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study.
    Lim E; Salamonsen RF; Mansouri M; Gaddum N; Mason DG; Timms DL; Stevens MC; Fraser J; Akmeliawati R; Lovell NH
    Artif Organs; 2015 Feb; 39(2):E24-35. PubMed ID: 25345482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous assessment of cardiac function during rotary blood pump support: a contractility index derived from pump flow.
    Naiyanetr P; Moscato F; Vollkron M; Zimpfer D; Wieselthaler G; Schima H
    J Heart Lung Transplant; 2010 Jan; 29(1):37-44. PubMed ID: 19782591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery.
    Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H
    Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive activity-based control of an implantable rotary blood pump: comparative software simulation study.
    Karantonis DM; Lim E; Mason DG; Salamonsen RF; Ayre PJ; Lovell NH
    Artif Organs; 2010 Feb; 34(2):E34-45. PubMed ID: 20420588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulse-pressure-enhancing controller for better physiologic perfusion of rotary blood pumps based on speed modulation.
    Huang F; Ruan X; Fu X
    ASAIO J; 2014; 60(3):269-79. PubMed ID: 24614360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters.
    Wang Y; Koenig SC; Slaughter MS; Giridharan GA
    ASAIO J; 2015; 61(2):170-7. PubMed ID: 25396276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specification of supervisory control systems for ventricular assist devices.
    Cavalheiro AC; Santos Fo DJ; Andrade A; Cardoso JR; Horikawa O; Bock E; Fonseca J
    Artif Organs; 2011 May; 35(5):465-70. PubMed ID: 21595713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.