These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 21749412)

  • 21. Physiological controller of an intra-aorta pump based on baroreflex sensitivity.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    Artif Organs; 2012 Dec; 36(12):1015-25. PubMed ID: 22963124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.
    Zhu L; Zhang X; Yao Z
    Artif Organs; 2010 Mar; 34(3):185-92. PubMed ID: 20447042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling and identification of an intra-aorta pump.
    Chang Y; Gao B
    ASAIO J; 2010; 56(6):504-9. PubMed ID: 21245795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization.
    Schima H; Vollkron M; Jantsch U; Crevenna R; Roethy W; Benkowski R; Morello G; Quittan M; Hiesmayr M; Wieselthaler G
    J Heart Lung Transplant; 2006 Feb; 25(2):167-73. PubMed ID: 16446216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an algorithm to regulate pump output for a closed air-loop type pneumatic biventricular assist device.
    Nam KW; Lee JJ; Hwang CM; Choi J; Choi H; Choi SW; Sun K
    Artif Organs; 2009 Dec; 33(12):1063-8. PubMed ID: 19604228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study.
    Giridharan GA; Skliar M
    Artif Organs; 2006 Apr; 30(4):301-7. PubMed ID: 16643388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.
    Su B; Chua LP; Lim TM; Zhou T
    Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Research on the control arithmetic for blood pump based on ventricular work].
    Xu X; Tan J; Gong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1089-92. PubMed ID: 18027703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data.
    Morley D; Litwak K; Ferber P; Spence P; Dowling R; Meyns B; Griffith B; Burkhoff D
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):21-8. PubMed ID: 17198776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A suction detection system for rotary blood pumps based on the Lagrangian support vector machine algorithm.
    Wang Y; Simaan MA
    IEEE J Biomed Health Inform; 2013 May; 17(3):654-63. PubMed ID: 23192602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An artificial right ventricle for failing fontan: in vitro and computational study.
    Lacour-Gayet FG; Lanning CJ; Stoica S; Wang R; Rech BA; Goldberg S; Shandas R
    Ann Thorac Surg; 2009 Jul; 88(1):170-6. PubMed ID: 19559219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo evaluation of the "TinyPump" as a pediatric left ventricular assist device.
    Kitao T; Ando Y; Yoshikawa M; Kobayashi M; Kimura T; Ohsawa H; Machida S; Yokoyama N; Sakota D; Konno T; Ishihara K; Takatani S
    Artif Organs; 2011 May; 35(5):543-53. PubMed ID: 21595723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mathematical model to evaluate control strategies for mechanical circulatory support.
    Cox LG; Loerakker S; Rutten MC; de Mol BA; van de Vosse FN
    Artif Organs; 2009 Aug; 33(8):593-603. PubMed ID: 19558561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of leakage flow in a shrouded centrifugal blood pump.
    Teo JB; Chan WK; Wong YW
    Artif Organs; 2010 Sep; 34(9):788-91. PubMed ID: 20883397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A controller for a miniature intra-aortic ventricular assist device.
    Hsu PL; Bruch J; McMahon R
    Artif Organs; 2011 Mar; 35(3):282-7. PubMed ID: 21114678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An automatic control algorithm for the optimal driving of the ventricular-assist device.
    Yoshizawa M; Takeda H; Watanabe T; Miura M; Yambe T; Katahira Y; Nitta S
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):243-52. PubMed ID: 1555854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control system for an implantable rotary blood pump.
    Nakata KI; Yoshikawa M; Takano T; Sankai Y; Ohtsuka G; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosaka S; Nose Y
    Ann Thorac Cardiovasc Surg; 2000 Aug; 6(4):242-6. PubMed ID: 11042480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescent image tracking velocimetry of the Nimbus AxiPump.
    Kerrigan JP; Shaffer FD; Maher TR; Dennis TJ; Borovetz HS; Antaki JF
    ASAIO J; 1993; 39(3):M639-43. PubMed ID: 8268616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical investigation on hydrodynamics and biocompatibility of a magnetically suspended axial blood pump.
    Zhu X; Zhang M; Zhang G; Liu H
    ASAIO J; 2006; 52(6):624-9. PubMed ID: 17117050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Noninvasive average flow estimation for an implantable rotary blood pump: a new algorithm incorporating the role of blood viscosity.
    Malagutti N; Karantonis DM; Cloherty SL; Ayre PJ; Mason DG; Salamonsen RF; Lovell NH
    Artif Organs; 2007 Jan; 31(1):45-52. PubMed ID: 17209960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.