These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 21749498)
1. A novel form of presynaptic CaMKII-dependent short-term potentiation between Lymnaea neurons. Luk CC; Naruo H; Prince D; Hassan A; Doran SA; Goldberg JI; Syed NI Eur J Neurosci; 2011 Aug; 34(4):569-77. PubMed ID: 21749498 [TBL] [Abstract][Full Text] [Related]
2. Trophic factor-induced plasticity of synaptic connections between identified Lymnaea neurons. Woodin MA; Hamakawa T; Takasaki M; Lukowiak K; Syed NI Learn Mem; 1999; 6(3):307-16. PubMed ID: 10492012 [TBL] [Abstract][Full Text] [Related]
3. Serotonin modulates transmitter release at central Lymnaea synapses through a G-protein-coupled and cAMP-mediated pathway. McCamphill PK; Dunn TW; Syed NI Eur J Neurosci; 2008 Apr; 27(8):2033-42. PubMed ID: 18412624 [TBL] [Abstract][Full Text] [Related]
4. The contribution of calcium/calmodulin-dependent protein-kinase II (CaMKII) to short-term plasticity at the neuromuscular junction. Mukhamedyarov MA; Kochunova JO; Yusupova ER; Haidarov BA; Zefirov AL; Palotás A Brain Res Bull; 2010 Apr; 81(6):613-6. PubMed ID: 20043980 [TBL] [Abstract][Full Text] [Related]
5. Synapse number and synaptic efficacy are regulated by presynaptic cAMP and protein kinase A. Munno DW; Prince DJ; Syed NI J Neurosci; 2003 May; 23(10):4146-55. PubMed ID: 12764102 [TBL] [Abstract][Full Text] [Related]
6. The effect of lidocaine on cholinergic neurotransmission in an identified reconstructed synapse. Onizuka S; Kasaba T; Takasaki M Anesth Analg; 2008 Oct; 107(4):1236-42. PubMed ID: 18806033 [TBL] [Abstract][Full Text] [Related]
7. Sevoflurane blocks cholinergic synaptic transmission postsynaptically but does not affect short-term potentiation. Naruo H; Onizuka S; Prince D; Takasaki M; Syed NI Anesthesiology; 2005 May; 102(5):920-8. PubMed ID: 15851878 [TBL] [Abstract][Full Text] [Related]
8. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy. Moriguchi S; Oomura Y; Shioda N; Han F; Hori N; Aou S; Fukunaga K Mol Cell Neurosci; 2011 Jan; 46(1):101-7. PubMed ID: 20807573 [TBL] [Abstract][Full Text] [Related]
9. Presynaptic long-term depression at a central glutamatergic synapse: a role for CaMKII. Margrie TW; Rostas JA; Sah P Nat Neurosci; 1998 Sep; 1(5):378-83. PubMed ID: 10196527 [TBL] [Abstract][Full Text] [Related]
10. Anesthetic treatment blocks synaptogenesis but not neuronal regeneration of cultured Lymnaea neurons. Woodall AJ; Naruo H; Prince DJ; Feng ZP; Winlow W; Takasaki M; Syed NI J Neurophysiol; 2003 Oct; 90(4):2232-9. PubMed ID: 12815022 [TBL] [Abstract][Full Text] [Related]
11. Developmental stage-dependent modulation of synapses by postsynaptic expression of activated calcium/calmodulin-dependent protein kinase II. Morimoto-Tanifuji T; Kazama H; Nose A Neuroscience; 2004; 128(4):797-806. PubMed ID: 15464287 [TBL] [Abstract][Full Text] [Related]
13. Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Colbran RJ; Brown AM Curr Opin Neurobiol; 2004 Jun; 14(3):318-27. PubMed ID: 15194112 [TBL] [Abstract][Full Text] [Related]
14. Regulation of presynaptic Ca(V)2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity. Mochida S; Few AP; Scheuer T; Catterall WA Neuron; 2008 Jan; 57(2):210-6. PubMed ID: 18215619 [TBL] [Abstract][Full Text] [Related]
15. Forskolin induces NMDA receptor-dependent potentiation at a central synapse in the leech. Grey KB; Burrell BD J Neurophysiol; 2008 May; 99(5):2719-24. PubMed ID: 18337371 [TBL] [Abstract][Full Text] [Related]
16. In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors. Fiumara F; Leitinger G; Milanese C; Montarolo PG; Ghirardi M Neuroscience; 2005; 134(4):1133-51. PubMed ID: 16054762 [TBL] [Abstract][Full Text] [Related]
17. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses. Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483 [TBL] [Abstract][Full Text] [Related]
18. Domoic acid induces a long-lasting enhancement of CA1 field responses and impairs tetanus-induced long-term potentiation in rat hippocampal slices. Qiu S; Jebelli AK; Ashe JH; Currás-Collazo MC Toxicol Sci; 2009 Sep; 111(1):140-50. PubMed ID: 19564213 [TBL] [Abstract][Full Text] [Related]
19. Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. Vazdarjanova A; Ramirez-Amaya V; Insel N; Plummer TK; Rosi S; Chowdhury S; Mikhael D; Worley PF; Guzowski JF; Barnes CA J Comp Neurol; 2006 Sep; 498(3):317-29. PubMed ID: 16871537 [TBL] [Abstract][Full Text] [Related]
20. Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Lysetskiy M; Földy C; Soltesz I Hippocampus; 2005; 15(6):691-6. PubMed ID: 15986406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]