These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21749508)

  • 21. Localization of group-1 allergen Zea m 1 in the coat and wall of maize pollen.
    Wang W; Milanesi C; Faleri C; Cresti M
    Acta Histochem; 2006; 108(5):395-400. PubMed ID: 16963110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins.
    Wu Y; Sharp RE; Durachko DM; Cosgrove DJ
    Plant Physiol; 1996 Jul; 111(3):765-72. PubMed ID: 11536740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expansins and coleoptile elongation in wheat.
    Gao Q; Zhao M; Li F; Guo Q; Xing S; Wang W
    Protoplasma; 2008; 233(1-2):73-81. PubMed ID: 18726548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style.
    Suen DF; Wu SS; Chang HC; Dhugga KS; Huang AH
    J Biol Chem; 2003 Oct; 278(44):43672-81. PubMed ID: 12930826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of expansins in graviresponding maize roots.
    Zhang N; Hasenstein KH
    Plant Cell Physiol; 2000 Dec; 41(12):1305-12. PubMed ID: 11134415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plant Stress Scenarios Differentially Affect Expression and IgE Reactivity of Grass Group-1 Allergen (β-Expansin) in Maize and Rice Pollen.
    Juprasong Y; Songnuan W
    Front Allergy; 2022; 3():807387. PubMed ID: 35386660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disentangling loosening from softening: insights into primary cell wall structure.
    Zhang T; Tang H; Vavylonis D; Cosgrove DJ
    Plant J; 2019 Dec; 100(6):1101-1117. PubMed ID: 31469935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring plant cell wall extension (creep) induced by acidic pH and by alpha-expansin.
    Durachko DM; Cosgrove DJ
    J Vis Exp; 2009 Mar; (25):1263. PubMed ID: 19279553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assembly and enlargement of the primary cell wall in plants.
    Cosgrove DJ
    Annu Rev Cell Dev Biol; 1997; 13():171-201. PubMed ID: 9442872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical Weakening of Paper and Plant Cell Walls by Bacterial Expansins.
    Cosgrove DJ; Hepler NK; Wagner ER; Durachko DM
    Methods Mol Biol; 2023; 2657():79-88. PubMed ID: 37149523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental regulation of polysaccharide metabolism and growth in the primary cell walls of maize.
    Inouhe M; McClellan M; Nevins D
    Int J Biol Macromol; 1997 Aug; 21(1-2):21-8. PubMed ID: 9283012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization of pectins in the pollen tube wall of Ornithogalum virens L. Does the pattern of pectin distribution depend on the growth rate of the pollen tube?
    Stepka M; Ciampolini F; Charzyńska M; Cresti M
    Planta; 2000 Mar; 210(4):630-5. PubMed ID: 10787057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expansins: roles in plant growth and potential applications in crop improvement.
    Marowa P; Ding A; Kong Y
    Plant Cell Rep; 2016 May; 35(5):949-65. PubMed ID: 26888755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes.
    Zhang Q; Cheetamun R; Dhugga KS; Rafalski JA; Tingey SV; Shirley NJ; Taylor J; Hayes K; Beatty M; Bacic A; Burton RA; Fincher GB
    BMC Plant Biol; 2014 Jan; 14():27. PubMed ID: 24423166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation.
    Muller B; Bourdais G; Reidy B; Bencivenni C; Massonneau A; Condamine P; Rolland G; Conéjéro G; Rogowsky P; Tardieu F
    Plant Physiol; 2007 Jan; 143(1):278-90. PubMed ID: 17098857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pollen wall development: the associated enzymes and metabolic pathways.
    Jiang J; Zhang Z; Cao J
    Plant Biol (Stuttg); 2013 Mar; 15(2):249-63. PubMed ID: 23252839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteome analysis of maize pollen for allergy-relevant components.
    Petersen A; Dresselhaus T; Grobe K; Becker WM
    Proteomics; 2006 Dec; 6(23):6317-25. PubMed ID: 17080481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.
    Mélida H; Largo-Gosens A; Novo-Uzal E; Santiago R; Pomar F; García P; García-Angulo P; Acebes JL; Álvarez J; Encina A
    J Integr Plant Biol; 2015 Apr; 57(4):357-72. PubMed ID: 25735403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction.
    Suen DF; Huang AH
    J Biol Chem; 2007 Jan; 282(1):625-36. PubMed ID: 17062571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measuring the Biomechanical Loosening Action of Bacterial Expansins on Paper and Plant Cell Walls.
    Cosgrove DJ; Hepler NK; Wagner ER; Durachko DM
    Methods Mol Biol; 2017; 1588():157-165. PubMed ID: 28417367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.