These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 21749648)
1. Glutamine and α-ketoglutarate as glutamate sources for glutathione synthesis in human erythrocytes. Whillier S; Garcia B; Chapman BE; Kuchel PW; Raftos JE FEBS J; 2011 Sep; 278(17):3152-63. PubMed ID: 21749648 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. Mason GF; Gruetter R; Rothman DL; Behar KL; Shulman RG; Novotny EJ J Cereb Blood Flow Metab; 1995 Jan; 15(1):12-25. PubMed ID: 7798329 [TBL] [Abstract][Full Text] [Related]
3. Role of aminotransferases in glutamate metabolism of human erythrocytes. Ellinger JJ; Lewis IA; Markley JL J Biomol NMR; 2011 Apr; 49(3-4):221-9. PubMed ID: 21380856 [TBL] [Abstract][Full Text] [Related]
4. Assimilation of alpha-glutamyl-peptides by human erythrocytes. A possible means of glutamate supply for glutathione synthesis. King GF; Kuchel PW Biochem J; 1985 May; 227(3):833-42. PubMed ID: 2860897 [TBL] [Abstract][Full Text] [Related]
5. Effect of alpha-ketoglutarate infusions on organ balances of glutamine and glutamate in anaesthetized dogs in the catabolic state. Roth E; Karner J; Roth-Merten A; Winkler S; Valentini L; Schaupp K Clin Sci (Lond); 1991 Jun; 80(6):625-31. PubMed ID: 1647927 [TBL] [Abstract][Full Text] [Related]
6. Glutathione protects chemokine-scavenging and antioxidative defense functions in human RBCs. Dumaswala UJ; Zhuo L; Mahajan S; Nair PN; Shertzer HG; Dibello P; Jacobsen DW Am J Physiol Cell Physiol; 2001 Apr; 280(4):C867-73. PubMed ID: 11245604 [TBL] [Abstract][Full Text] [Related]
7. Critical role of glutamine metabolism in cardiomyocytes under oxidative stress. Watanabe K; Nagao M; Toh R; Irino Y; Shinohara M; Iino T; Yoshikawa S; Tanaka H; Satomi-Kobayashi S; Ishida T; Hirata KI Biochem Biophys Res Commun; 2021 Jan; 534():687-693. PubMed ID: 33213841 [TBL] [Abstract][Full Text] [Related]
8. Oral supplementations with free and dipeptide forms of L-glutamine in endotoxemic mice: effects on muscle glutamine-glutathione axis and heat shock proteins. Cruzat VF; Pantaleão LC; Donato J; de Bittencourt PI; Tirapegui J J Nutr Biochem; 2014 Mar; 25(3):345-52. PubMed ID: 24524905 [TBL] [Abstract][Full Text] [Related]
9. Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Whillier S; Raftos JE; Chapman B; Kuchel PW Redox Rep; 2009; 14(3):115-24. PubMed ID: 19490753 [TBL] [Abstract][Full Text] [Related]
10. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Xiao D; Zeng L; Yao K; Kong X; Wu G; Yin Y Amino Acids; 2016 Sep; 48(9):2067-80. PubMed ID: 27161106 [TBL] [Abstract][Full Text] [Related]
11. The metabolic importance of the glutaminase II pathway in normal and cancerous cells. Dorai T; Pinto JT; Denton TT; Krasnikov BF; Cooper AJL Anal Biochem; 2022 May; 644():114083. PubMed ID: 33352190 [TBL] [Abstract][Full Text] [Related]
12. Pathways and regulation of ammoniagenesis by the LLC-PK1 cells in culture. Sahai A; Cole LA; Tannen RL J Lab Clin Med; 1989 Sep; 114(3):285-93. PubMed ID: 2570115 [TBL] [Abstract][Full Text] [Related]
13. Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Peng LA; Schousboe A; Hertz L Neurochem Res; 1991 Jan; 16(1):29-34. PubMed ID: 1675774 [TBL] [Abstract][Full Text] [Related]
14. Alteration in oxidative metabolism of alanine in cerebellar granule cell cultures as a consequence of the development of the ability to utilize alanine as an amino group donor for synthesis of transmitter glutamate. Peng L; Zhang X; Hertz L Brain Res Dev Brain Res; 1994 May; 79(1):128-31. PubMed ID: 7915213 [TBL] [Abstract][Full Text] [Related]
15. Glutamine and alpha-ketoglutarate uptake and metabolism by nerve terminal enriched material from mouse cerebellum. Shank RP; Campbell GL Neurochem Res; 1982 May; 7(5):601-16. PubMed ID: 6126832 [TBL] [Abstract][Full Text] [Related]
16. Selective stage-specific changes in the permeability to small hydrophilic solutes of human erythrocytes infected with Plasmodium falciparum. Elford BC; Haynes JD; Chulay JD; Wilson RJ Mol Biochem Parasitol; 1985 Jun; 16(1):43-60. PubMed ID: 3897858 [TBL] [Abstract][Full Text] [Related]
17. Increased red cell glutamine availability in sickle cell anemia: demonstration of increased active transport, affinity, and increased glutamate level in intact red cells. Niihara Y; Zerez CR; Akiyama DS; Tanaka KR J Lab Clin Med; 1997 Jul; 130(1):83-90. PubMed ID: 9242370 [TBL] [Abstract][Full Text] [Related]
18. Molecular identification and characterisation of the glycine transporter (GLYT1) and the glutamine/glutamate transporter (ASCT2) in the rat lens. Lim J; Lorentzen KA; Kistler J; Donaldson PJ Exp Eye Res; 2006 Aug; 83(2):447-55. PubMed ID: 16635486 [TBL] [Abstract][Full Text] [Related]
19. Effects of oral supplementation with glutamine and alanyl-glutamine on glutamine, glutamate, and glutathione status in trained rats and subjected to long-duration exercise. Cruzat VF; Tirapegui J Nutrition; 2009 Apr; 25(4):428-35. PubMed ID: 19056244 [TBL] [Abstract][Full Text] [Related]
20. Analysis of conformationally restricted alpha-ketoglutarate analogues as substrates of dehydrogenases and aminotransferases. Denton TT; Thompson CM; Cooper AJ Anal Biochem; 2001 Nov; 298(2):265-74. PubMed ID: 11700982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]