These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 217500)

  • 1. Noradrenergic hyperinnervation reduces the density of beta-adrenergic receptors in rat cerebellum.
    Harden TK; Mailman RB; Mueller RA; Breese GR
    Brain Res; 1979 Apr; 166(1):194-8. PubMed ID: 217500
    [No Abstract]   [Full Text] [Related]  

  • 2. Selective increases in the density of cerebellar beta-1-adrenergic receptors.
    Wolfe BB; Minneman KP; Molinoff PB
    Brain Res; 1982 Feb; 234(2):474-9. PubMed ID: 6277437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of rat brain alpha- and beta-adrenergic receptor populations by lesion of the dorsal noradrenergic bundle.
    U'Prichard DC; Reisine TD; Mason ST; Fibiger HC; Yamamura HI
    Brain Res; 1980 Apr; 187(1):143-54. PubMed ID: 6244065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fetally-induced noradrenergic hyperinnervation of cerebral cortex results in persistent down-regulation of beta-receptors.
    Beaulieu M; Coyle JT
    Brain Res; 1982 Aug; 256(4):491-4. PubMed ID: 6290000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypersensitivity to noradrenaline in cortex after chronic morphine: relevance to tolerance and dependence.
    Llorens C; Martres MP; Baudry M; Schwartz JC
    Nature; 1978 Aug; 274(5671):603-5. PubMed ID: 209336
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta receptor binding in rat cerebellum: electrophysiological and biochemical comparison.
    Schultz JE; Siggins GR; Schocker FW; Türck M; Bloom FE
    J Pharmacol Exp Ther; 1981 Jan; 216(1):28-38. PubMed ID: 6256526
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of 6-hydroxydopamine on the development of the beta adrenergic receptor/adenylate cyclase system in rat cerebral cortex.
    Harden TK; Wolfe BB; Sporn JR; Poulos BK; Molinoff PB
    J Pharmacol Exp Ther; 1977 Oct; 203(1):132-43. PubMed ID: 198523
    [No Abstract]   [Full Text] [Related]  

  • 8. beta1- and beta2-Adrenergic receptors in rat cerebral cortex are independently regulated.
    Minneman KP; Dibner MD; Wolfe BB; Molinoff PB
    Science; 1979 May; 204(4395):866-8. PubMed ID: 35829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential supersensitivity of beta-receptor subtypes in rat cortex and cerebellum after central noradrenergic denervation.
    U'Prichard DC; Reisine TD; Yamamura S; Mason ST; Fibiger HC; Ehlert F; Yamamura HI
    Life Sci; 1980 Feb; 26(5):355-64. PubMed ID: 6245317
    [No Abstract]   [Full Text] [Related]  

  • 10. beta-Adrenergic receptor involvement in 6-hydroxydopamine-induced supersensitivity in rat cerebral cortex.
    Sporn JR; Harden TK; Wolfe BB; Molinoff PB
    Science; 1976 Nov; 194(4265):624-6. PubMed ID: 10626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and differential in vivo regulation of brain adrenergic receptor subtypes.
    U'Prichard DC; Yamamura HI; Reisine TD
    Adv Biochem Psychopharmacol; 1980; 21():213-21. PubMed ID: 6103648
    [No Abstract]   [Full Text] [Related]  

  • 12. alpha 1- and beta-adrenergic receptors are co-regulated during both noradrenergic denervation and hyperinnervation.
    Sutin J; Minneman KP
    Neuroscience; 1985 Apr; 14(4):973-80. PubMed ID: 2987756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. beta-Adrenergic receptor subtypes in rat brain.
    Minneman KP; Wolfe BB; Pittman RN; Molinoff PB
    Adv Biochem Psychopharmacol; 1983; 36():73-81. PubMed ID: 6305157
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulation of beta-adrenergic receptors in the cerebral cortex.
    Molinoff PB; Sporn JR; Wolfe BB; Harden TK
    Adv Cyclic Nucleotide Res; 1978; 9():465-83. PubMed ID: 208390
    [No Abstract]   [Full Text] [Related]  

  • 15. Alterations in beta 1- and beta 2-adrenergic receptor density in the cerebellum of aging rats.
    Pittman RN; Minneman KP; Molinoff PB
    J Neurochem; 1980 Jul; 35(1):273-5. PubMed ID: 6256478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding of fluorocatecholamines to adrenergic and dopaminergic receptors in rat brain membranes.
    Nimit Y; Cantacuzene D; Kirk KL; Creveling CR; Daly JW
    Life Sci; 1980 Oct; 27(17):1577-85. PubMed ID: 6255279
    [No Abstract]   [Full Text] [Related]  

  • 17. Failure to find beta-adrenergic receptor binding in guinea pig cerebral cortex with [3H]dihydroalprenolol.
    Clark C; Hoyler E; Davis JN
    Brain Res; 1977 May; 127(2):313-6. PubMed ID: 193615
    [No Abstract]   [Full Text] [Related]  

  • 18. Prenatal drug exposures sensitize noradrenergic circuits to subsequent disruption by chlorpyrifos.
    Slotkin TA; Skavicus S; Seidler FJ
    Toxicology; 2015 Dec; 338():8-16. PubMed ID: 26419632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ontogeny of beta 1- and beta 2-adrenergic receptors in rat cerebellum and cerebral cortex.
    Pittman RN; Minneman KP; Molinoff PB
    Brain Res; 1980 Apr; 188(2):357-68. PubMed ID: 6245756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identity of [3H]-dihydroalprenolol binding sites and beta-adrenergic receptors coupled with adenylate cyclase in the central nervous system: pharmacological properties, distribution and adaptive responsiveness.
    Dolphin A; Adrien J; Hamon M; Bockaert J
    Mol Pharmacol; 1979 Jan; 15(1):1-15. PubMed ID: 218089
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.