BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21750120)

  • 1. Humic acid-oxidizing, nitrate-reducing bacteria in agricultural soils.
    Van Trump JI; Wrighton KC; Thrash JC; Weber KA; Andersen GL; Coates JD
    mBio; 2011; 2(4):e00044-11. PubMed ID: 21750120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.
    Coates JD; Cole KA; Chakraborty R; O'Connor SM; Achenbach LA
    Appl Environ Microbiol; 2002 May; 68(5):2445-52. PubMed ID: 11976120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem.
    Jordan FL; Cantera JJ; Fenn ME; Stein LY
    Appl Environ Microbiol; 2005 Jan; 71(1):197-206. PubMed ID: 15640188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production.
    Kumaraswamy R; Ebert S; Gray MR; Fedorak PM; Foght JM
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):2027-38. PubMed ID: 21057944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nitrate, acetate, and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil.
    Nozawa-Inoue M; Jien M; Yang K; Rolston DE; Hristova KR; Scow KM
    FEMS Microbiol Ecol; 2011 May; 76(2):278-88. PubMed ID: 21284679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equal importance of humic acids and nitrate in driving anaerobic oxidation of methane in paddy soils.
    Bai Y; Wang Y; Shen L; Shang B; Ji Y; Ren B; Yang W; Yang Y; Ma Z; Feng Z
    Sci Total Environ; 2024 Feb; 912():169311. PubMed ID: 38103608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial populations responsive to denitrification-inducing conditions in rice paddy soil, as revealed by comparative 16S rRNA gene analysis.
    Ishii S; Yamamoto M; Kikuchi M; Oshima K; Hattori M; Otsuka S; Senoo K
    Appl Environ Microbiol; 2009 Nov; 75(22):7070-8. PubMed ID: 19767468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated anaerobic microbial redox cycling of iron.
    Coby AJ; Picardal F; Shelobolina E; Xu H; Roden EE
    Appl Environ Microbiol; 2011 Sep; 77(17):6036-42. PubMed ID: 21742920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments.
    Akob DM; Mills HJ; Gihring TM; Kerkhof L; Stucki JW; Anastácio AS; Chin KJ; Küsel K; Palumbo AV; Watson DB; Kostka JE
    Appl Environ Microbiol; 2008 May; 74(10):3159-70. PubMed ID: 18378664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term effects of mineral versus organic fertilizers on activity and structure of the methanotrophic community in agricultural soils.
    Seghers D; Top EM; Reheul D; Bulcke R; Boeckx P; Verstraete W; Siciliano SD
    Environ Microbiol; 2003 Oct; 5(10):867-77. PubMed ID: 14510840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria.
    Kanaparthi D; Conrad R
    Syst Appl Microbiol; 2015 May; 38(3):184-8. PubMed ID: 25864167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-driven enrichment of the crucial nitrate-reducing bacteria in limed peat soil microcosms.
    Zhu Y; Zhang X; Wu X; Chen G; Bakken LR; Zhao L; Frostegård Å; Zhang X
    Lett Appl Microbiol; 2017 Aug; 65(2):159-164. PubMed ID: 28517029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil.
    Park HJ; Chae N; Sul WJ; Lee BY; Lee YK; Kim D
    Microb Ecol; 2015 Apr; 69(3):668-75. PubMed ID: 25272964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes.
    Will C; Thürmer A; Wollherr A; Nacke H; Herold N; Schrumpf M; Gutknecht J; Wubet T; Buscot F; Daniel R
    Appl Environ Microbiol; 2010 Oct; 76(20):6751-9. PubMed ID: 20729324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of nitrate reduction by chromium (VI) in anaerobic soil microcosms.
    Kourtev PS; Nakatsu CH; Konopka A
    Appl Environ Microbiol; 2009 Oct; 75(19):6249-57. PubMed ID: 19684175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition of humic acid-degrading estuarine and marine bacterial communities.
    Rocker D; Brinkhoff T; Grüner N; Dogs M; Simon M
    FEMS Microbiol Ecol; 2012 Apr; 80(1):45-63. PubMed ID: 22133061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of NO
    Heo H; Kwon M; Song B; Yoon S
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32631862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrate removal by electro-bioremediation technology in Korean soil.
    Choi JH; Maruthamuthu S; Lee HG; Ha TH; Bae JH
    J Hazard Mater; 2009 Sep; 168(2-3):1208-16. PubMed ID: 19342160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial community structure corresponds to performance during cathodic nitrate reduction.
    Wrighton KC; Virdis B; Clauwaert P; Read ST; Daly RA; Boon N; Piceno Y; Andersen GL; Coates JD; Rabaey K
    ISME J; 2010 Nov; 4(11):1443-55. PubMed ID: 20520654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils.
    Freitag TE; Chang L; Clegg CD; Prosser JI
    Appl Environ Microbiol; 2005 Dec; 71(12):8323-34. PubMed ID: 16332819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.