These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21750496)

  • 41. Method for preparation, programming, and characterization of miniaturized particulate shape-memory polymer matrices.
    Wischke C; Lendlein A
    Langmuir; 2014 Mar; 30(10):2820-7. PubMed ID: 24564390
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Smart Mechanically Tunable Surfaces with Shape Memory Behavior and Wetting-Programmable Topography.
    Constante G; Apsite I; Auerbach P; Aland S; Schönfeld D; Pretsch T; Milkin P; Ionov L
    ACS Appl Mater Interfaces; 2022 May; 14(17):20208-20219. PubMed ID: 35438953
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Shape memory in un-cross-linked biodegradable polymers.
    Wong YS; Xiong Y; Venkatraman SS; Boey FY
    J Biomater Sci Polym Ed; 2008; 19(2):175-91. PubMed ID: 18237491
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers.
    Pisani S; Genta I; Modena T; Dorati R; Benazzo M; Conti B
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163218
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shape Memory Polymers as Smart Materials: A Review.
    Dayyoub T; Maksimkin AV; Filippova OV; Tcherdyntsev VV; Telyshev DV
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrical Properties of Thiol-ene-based Shape Memory Polymers Intended for Flexible Electronics.
    Frewin CL; Ecker M; Joshi-Imre A; Kamgue J; Waddell J; Danda VR; Stiller AM; Voit WE; Pancrazio JJ
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31108911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanically programmed shape change in laminated elastomeric composites.
    Robertson JM; Torbati AH; Rodriguez ED; Mao Y; Baker RM; Qi HJ; Mather PT
    Soft Matter; 2015 Jul; 11(28):5754-64. PubMed ID: 26086682
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physical aspects of cell culture substrates: topography, roughness, and elasticity.
    Ross AM; Jiang Z; Bastmeyer M; Lahann J
    Small; 2012 Feb; 8(3):336-55. PubMed ID: 22162324
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Shape memory polymer network with thermally distinct elasticity and plasticity.
    Zhao Q; Zou W; Luo Y; Xie T
    Sci Adv; 2016 Jan; 2(1):e1501297. PubMed ID: 26824077
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyurethane Shape Memory Polymer/pH-Responsive Hydrogel Hybrid for Bi-Function Synergistic Actuations.
    Peng S; Cao X; Sun Y; Chen L; Ma C; Yang L; Zhao H; Liu Q; Liu Z; Ma C
    Gels; 2023 May; 9(5):. PubMed ID: 37233019
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology.
    Tseng LF; Mather PT; Henderson JH
    Acta Biomater; 2013 Nov; 9(11):8790-801. PubMed ID: 23851156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nano/microstructures of shape memory polymers: from materials to applications.
    Zhang F; Xia Y; Liu Y; Leng J
    Nanoscale Horiz; 2020 Jul; 5(8):1155-1173. PubMed ID: 32567643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterogeneous Solid-State Plasticity of a Multi-Functional Metallo-Supramolecular Shape-Memory Polymer towards Arbitrary Shape Programming.
    Chen G; Chen D
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New design of shape memory polymers based on natural rubber crosslinked via oxa-Michael reaction.
    Lin T; Ma S; Lu Y; Guo B
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5695-703. PubMed ID: 24673791
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Overcoming the adhesion paradox and switchability conflict on rough surfaces with shape-memory polymers.
    Linghu C; Liu Y; Tan YY; Sing JHM; Tang Y; Zhou A; Wang X; Li D; Gao H; Hsia KJ
    Proc Natl Acad Sci U S A; 2023 Mar; 120(13):e2221049120. PubMed ID: 36940332
    [TBL] [Abstract][Full Text] [Related]  

  • 58. pH-induced shape-memory polymers.
    Han XJ; Dong ZQ; Fan MM; Liu Y; li JH; Wang YF; Yuan QJ; Li BJ; Zhang S
    Macromol Rapid Commun; 2012 Jun; 33(12):1055-60. PubMed ID: 22517685
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling of stress relaxation of a semi-crystalline multiblock copolymer and its deformation behavior.
    Yan W; Fang L; Heuchel M; Kratz K; Lendlein A
    Clin Hemorheol Microcirc; 2015; 60(1):109-20. PubMed ID: 25818160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Self-Healing and Shape Memory Polymer that Functions at Body Temperature.
    Lai HY; Wang HQ; Lai JC; Li CH
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.