These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 21750548)

  • 1. Fast-spiking interneurons have an initial orientation bias that is lost with vision.
    Kuhlman SJ; Tring E; Trachtenberg JT
    Nat Neurosci; 2011 Jul; 14(9):1121-3. PubMed ID: 21750548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli.
    Atallah BV; Bruns W; Carandini M; Scanziani M
    Neuron; 2012 Jan; 73(1):159-70. PubMed ID: 22243754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex.
    Hofer SB; Ko H; Pichler B; Vogelstein J; Ros H; Zeng H; Lein E; Lesica NA; Mrsic-Flogel TD
    Nat Neurosci; 2011 Jul; 14(8):1045-52. PubMed ID: 21765421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadening of cortical inhibition mediates developmental sharpening of orientation selectivity.
    Li YT; Ma WP; Pan CJ; Zhang LI; Tao HW
    J Neurosci; 2012 Mar; 32(12):3981-91. PubMed ID: 22442065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency.
    Moore AK; Wehr M
    J Neurosci; 2013 Aug; 33(34):13713-23. PubMed ID: 23966693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex.
    Runyan CA; Schummers J; Van Wart A; Kuhlman SJ; Wilson NR; Huang ZJ; Sur M
    Neuron; 2010 Sep; 67(5):847-57. PubMed ID: 20826315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synapse-associated protein 97 regulates the membrane properties of fast-spiking parvalbumin interneurons in the visual cortex.
    Akgul G; Wollmuth LP
    J Neurosci; 2013 Jul; 33(31):12739-50. PubMed ID: 23904610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binocular deprivation induces both age-dependent and age-independent forms of plasticity in parvalbumin inhibitory neuron visual response properties.
    Feese BD; Pafundo DE; Schmehl MN; Kuhlman SJ
    J Neurophysiol; 2018 Feb; 119(2):738-751. PubMed ID: 29118195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Innate Cortical Mechanisms to the Maturation of Orientation Selectivity in Parvalbumin Interneurons.
    Figueroa Velez DX; Ellefsen KL; Hathaway ER; Carathedathu MC; Gandhi SP
    J Neurosci; 2017 Jan; 37(4):820-829. PubMed ID: 28123018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular mechanisms of brain state-dependent gain modulation in visual cortex.
    Polack PO; Friedman J; Golshani P
    Nat Neurosci; 2013 Sep; 16(9):1331-9. PubMed ID: 23872595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuned thalamic excitation is amplified by visual cortical circuits.
    Lien AD; Scanziani M
    Nat Neurosci; 2013 Sep; 16(9):1315-23. PubMed ID: 23933748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local Integration Accounts for Weak Selectivity of Mouse Neocortical Parvalbumin Interneurons.
    Scholl B; Pattadkal JJ; Dilly GA; Priebe NJ; Zemelman BV
    Neuron; 2015 Jul; 87(2):424-36. PubMed ID: 26182423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadening of inhibitory tuning underlies contrast-dependent sharpening of orientation selectivity in mouse visual cortex.
    Li YT; Ma WP; Li LY; Ibrahim LA; Wang SZ; Tao HW
    J Neurosci; 2012 Nov; 32(46):16466-77. PubMed ID: 23152629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity.
    Lazarus MS; Huang ZJ
    J Neurophysiol; 2011 Aug; 106(2):775-87. PubMed ID: 21613595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional plasticity in fast-spiking GABA circuits by visual experience.
    Yazaki-Sugiyama Y; Kang S; Câteau H; Fukai T; Hensch TK
    Nature; 2009 Nov; 462(7270):218-21. PubMed ID: 19907494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual Deprivation During the Critical Period Enhances Layer 2/3 GABAergic Inhibition in Mouse V1.
    Kannan M; Gross GG; Arnold DB; Higley MJ
    J Neurosci; 2016 Jun; 36(22):5914-9. PubMed ID: 27251614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of early visual experience in the development of spatial-frequency preference in the primary visual cortex.
    Nishio N; Hayashi K; Ishikawa AW; Yoshimura Y
    J Physiol; 2021 Sep; 599(17):4131-4152. PubMed ID: 34275157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocular dominance plasticity disrupts binocular inhibition-excitation matching in visual cortex.
    Saiepour MH; Rajendran R; Omrani A; Ma WP; Tao HW; Heimel JA; Levelt CN
    Curr Biol; 2015 Mar; 25(6):713-721. PubMed ID: 25754642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.