BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 21750656)

  • 1. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.
    Colen CB; Shen Y; Ghoddoussi F; Yu P; Francis TB; Koch BJ; Monterey MD; Galloway MP; Sloan AE; Mathupala SP
    Neoplasia; 2011 Jul; 13(7):620-32. PubMed ID: 21750656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: an in vitro study.
    Colen CB; Seraji-Bozorgzad N; Marples B; Galloway MP; Sloan AE; Mathupala SP
    Neurosurgery; 2006 Dec; 59(6):1313-23; discussion 1323-4. PubMed ID: 17277695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets.
    Miranda-Gonçalves V; Honavar M; Pinheiro C; Martinho O; Pires MM; Pinheiro C; Cordeiro M; Bebiano G; Costa P; Palmeirim I; Reis RM; Baltazar F
    Neuro Oncol; 2013 Feb; 15(2):172-88. PubMed ID: 23258846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of the blood-brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma.
    Agarwal S; Manchanda P; Vogelbaum MA; Ohlfest JR; Elmquist WF
    Drug Metab Dispos; 2013 Jan; 41(1):33-9. PubMed ID: 23014761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intratumoral delivery of bortezomib: impact on survival in an intracranial glioma tumor model.
    Wang W; Cho HY; Rosenstein-Sisson R; Marín Ramos NI; Price R; Hurth K; Schönthal AH; Hofman FM; Chen TC
    J Neurosurg; 2018 Mar; 128(3):695-700. PubMed ID: 28409734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas.
    Miranda-Gonçalves V; Granja S; Martinho O; Honavar M; Pojo M; Costa BM; Pires MM; Pinheiro C; Cordeiro M; Bebiano G; Costa P; Reis RM; Baltazar F
    Oncotarget; 2016 Jul; 7(29):46335-46353. PubMed ID: 27331625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study.
    Mathupala SP; Parajuli P; Sloan AE
    Neurosurgery; 2004 Dec; 55(6):1410-9; discussion 1419. PubMed ID: 15574223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of convection-enhanced delivery of bevacizumab on survival of glioma-bearing animals.
    Wang W; Sivakumar W; Torres S; Jhaveri N; Vaikari VP; Gong A; Howard A; Golden EB; Louie SG; Schönthal AH; Hofman FM; Chen TC
    Neurosurg Focus; 2015 Mar; 38(3):E8. PubMed ID: 25727230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration.
    Clark PA; Bhattacharya S; Elmayan A; Darjatmoko SR; Thuro BA; Yan MB; van Ginkel PR; Polans AS; Kuo JS
    J Neurosurg; 2017 May; 126(5):1448-1460. PubMed ID: 27419830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astrocyte elevated gene-1: a novel target for human glioma therapy.
    Emdad L; Sarkar D; Lee SG; Su ZZ; Yoo BK; Dash R; Yacoub A; Fuller CE; Shah K; Dent P; Bruce JN; Fisher PB
    Mol Cancer Ther; 2010 Jan; 9(1):79-88. PubMed ID: 20053777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma.
    Reuss AM; Groos D; Buchfelder M; Savaskan N
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model.
    Pei J; Park IH; Ryu HH; Li SY; Li CH; Lim SH; Wen M; Jang WY; Jung S
    Radiat Oncol; 2015 Aug; 10():164. PubMed ID: 26245666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress.
    Lenting K; Khurshed M; Peeters TH; van den Heuvel CNAM; van Lith SAM; de Bitter T; Hendriks W; Span PN; Molenaar RJ; Botman D; Verrijp K; Heerschap A; Ter Laan M; Kusters B; van Ewijk A; Huynen MA; van Noorden CJF; Leenders WPJ
    FASEB J; 2019 Jan; 33(1):557-571. PubMed ID: 30001166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. δ-Catenin Promotes Bevacizumab-Induced Glioma Invasion.
    Shimizu T; Ishida J; Kurozumi K; Ichikawa T; Otani Y; Oka T; Tomita Y; Hattori Y; Uneda A; Matsumoto Y; Date I
    Mol Cancer Ther; 2019 Apr; 18(4):812-822. PubMed ID: 30872378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of a PP2A inhibitor on the nuclear receptor corepressor pathway in glioma.
    Lu J; Zhuang Z; Song DK; Mehta GU; Ikejiri B; Mushlin H; Park DM; Lonser RR
    J Neurosurg; 2010 Aug; 113(2):225-33. PubMed ID: 20001590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340.
    Price A; Shi Q; Morris D; Wilcox ME; Brasher PM; Rewcastle NB; Shalinsky D; Zou H; Appelt K; Johnston RN; Yong VW; Edwards D; Forsyth P
    Clin Cancer Res; 1999 Apr; 5(4):845-54. PubMed ID: 10213221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The anti-cancer effect of ZR30 protein via targeting extracellular signal proteins of different cell subpopulations of glioma].
    Li YY; Chen XH; Sun T; Hu Y; Zhou YH; Zhou YX
    Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):812-817. PubMed ID: 30481930
    [No Abstract]   [Full Text] [Related]  

  • 18. Lactate Transporters and pH Regulation: Potential Therapeutic Targets in Glioblastomas.
    Miranda-Gonçalves V; Reis RM; Baltazar F
    Curr Cancer Drug Targets; 2016; 16(5):388-99. PubMed ID: 26694251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-cancer effect of metabotropic glutamate receptor 1 inhibition in human glioma U87 cells: involvement of PI3K/Akt/mTOR pathway.
    Zhang C; Yuan XR; Li HY; Zhao ZJ; Liao YW; Wang XY; Su J; Sang SS; Liu Q
    Cell Physiol Biochem; 2015; 35(2):419-32. PubMed ID: 25613036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of oxidative phosphorylation confers resistance against bevacizumab in experimental glioma.
    Eriksson JA; Wanka C; Burger MC; Urban H; Hartel I; von Renesse J; Harter PN; Mittelbronn M; Steinbach JP; Rieger J
    J Neurochem; 2018 Feb; 144(4):421-430. PubMed ID: 29178334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.