BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21750758)

  • 21. New Details of the Human Corneal Limbus Revealed With Second Harmonic Generation Imaging.
    Park CY; Lee JK; Zhang C; Chuck RS
    Invest Ophthalmol Vis Sci; 2015 Sep; 56(10):6058-66. PubMed ID: 26393473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical coherence tomography as a rapid, accurate, noncontact method of visualizing the palisades of Vogt.
    Lathrop KL; Gupta D; Kagemann L; Schuman JS; Sundarraj N
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1381-7. PubMed ID: 22266521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corneo-scleral limbus demarcation from 3D height data.
    Consejo A; Iskander DR
    Cont Lens Anterior Eye; 2016 Dec; 39(6):450-457. PubMed ID: 27212670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo imaging of palisades of Vogt in dry eye versus normal subjects using en-face spectral-domain optical coherence tomography.
    Ghouali W; Tahiri Joutei Hassani R; Djerada Z; Liang H; El Sanharawi M; Labbé A; Baudouin C
    PLoS One; 2017; 12(11):e0187864. PubMed ID: 29176786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [In vivo study of normal human limbal and central corneas using laser confocal microscope].
    Rong B; Yan XM
    Zhonghua Yan Ke Za Zhi; 2006 Jan; 42(1):17-21. PubMed ID: 16638275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [In vivo imaging of limbal epithelium and palisades of Vogt].
    Falke K; Prakasam RK; Guthoff RF; Stachs O
    Klin Monbl Augenheilkd; 2012 Dec; 229(12):1185-90. PubMed ID: 23258669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The anatomy of the limbus.
    Van Buskirk EM
    Eye (Lond); 1989; 3 ( Pt 2)():101-8. PubMed ID: 2695343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Actin filaments in cells of human trabecular meshwork and Schlemm's canal.
    Gipson IK; Anderson RA
    Invest Ophthalmol Vis Sci; 1979 Jun; 18(6):547-61. PubMed ID: 571861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging collector channel entrance with a new intraocular micro-probe swept-source optical coherence tomography.
    Xin C; Chen X; Li M; Shi Y; Wang H; Wang R; Wang N
    Acta Ophthalmol; 2017 Sep; 95(6):602-607. PubMed ID: 28440591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-Photon Microscopy of the Mouse Peripheral Cornea Ex Vivo.
    Lee JH; Kim KH; Lee S; Jeong H; Kim MJ
    Cornea; 2016 Nov; 35 Suppl 1():S31-S37. PubMed ID: 27631351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral-domain Optical Coherence Tomography in Limbal Stem Cell Deficiency. A Case-Control Study.
    Banayan N; Georgeon C; Grieve K; Borderie VM
    Am J Ophthalmol; 2018 Jun; 190():179-190. PubMed ID: 29621511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Surgical anatomy of corneoscleral limbus].
    de Laage de Meux P; Kantelip B
    Arch Ophtalmol (Paris); 1976 Jan; 36(1):39-50. PubMed ID: 136935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrahigh-resolution OCT imaging of the human cornea.
    Werkmeister RM; Sapeta S; Schmidl D; Garhöfer G; Schmidinger G; Aranha Dos Santos V; Aschinger GC; Baumgartner I; Pircher N; Schwarzhans F; Pantalon A; Dua H; Schmetterer L
    Biomed Opt Express; 2017 Feb; 8(2):1221-1239. PubMed ID: 28271013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The spectrum of cytokeratins expressed in the adult human cornea, limbus and perilimbal conjunctiva.
    Merjava S; Neuwirth A; Tanzerova M; Jirsova K
    Histol Histopathol; 2011 Mar; 26(3):323-31. PubMed ID: 21210345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging limbal and scleral vasculature using Swept Source Optical Coherence Tomography.
    Grulkowski I; Liu JJ; Baumann B; Potsaid B; Lu C; Fujimoto JG
    Photonics Lett Pol; 2011 Jan; 3(4):132-134. PubMed ID: 22919461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Corneo-scleral limbal changes following short-term soft contact lens wear.
    Consejo A; Bartuzel MM; Iskander DR
    Cont Lens Anterior Eye; 2017 Oct; 40(5):293-300. PubMed ID: 28550975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Evaluation the change of corneal epithelium thickness after pterygium excision with conjunctival autograft transplantation by Fourier domain optical coherence tomography].
    Wu D; Hong J; Wang F; Cui X; Yang Y; Zhao Y; Xu J
    Zhonghua Yan Ke Za Zhi; 2014 Nov; 50(11):833-8. PubMed ID: 25582209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics and variations of in vivo Schlemm's canal and collector channel microstructures in enhanced-depth imaging optical coherence tomography.
    Li P; Butt A; Chien JL; Ghassibi MP; Furlanetto RL; Netto CF; Liu Y; Kirkland W; Liebmann JM; Ritch R; Park SC
    Br J Ophthalmol; 2017 Jun; 101(6):808-813. PubMed ID: 27688593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anterior chamber angle imaging with swept-source optical coherence tomography: detecting the scleral spur, Schwalbe's Line, and Schlemm's Canal.
    McKee H; Ye C; Yu M; Liu S; Lam DS; Leung CK
    J Glaucoma; 2013 Aug; 22(6):468-72. PubMed ID: 23377578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diagnosis of limbal stem cell deficiency based on corneal epithelial thickness measured on anterior segment optical coherence tomography.
    Mehtani A; Agarwal MC; Sharma S; Chaudhary S
    Indian J Ophthalmol; 2017 Nov; 65(11):1120-1126. PubMed ID: 29133636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.