These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21750772)

  • 1. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection.
    Irsch K; Gramatikov B; Wu YK; Guyton D
    Biomed Opt Express; 2011 Jul; 2(7):1955-68. PubMed ID: 21750772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation.
    Irsch K; Gramatikov BI; Wu YK; Guyton DL
    J Biomed Opt; 2014 Jun; 19(6):067004. PubMed ID: 24911020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence.
    Irsch K; Gramatikov BI; Wu YK; Guyton DL
    Opt Express; 2014 Apr; 22(7):7972-88. PubMed ID: 24718173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided fixation detection using retinal birefringence in multi-modal ophthalmic systems: Computer, electronics, algorithms.
    Gramatikov BI
    Comput Biol Med; 2020 Apr; 119():103672. PubMed ID: 32339117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of retinal birefringence scanning.
    Hunter DG; Sandruck JC; Sau S; Patel SN; Guyton DL
    J Opt Soc Am A Opt Image Sci Vis; 1999 Sep; 16(9):2103-11. PubMed ID: 10474891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning.
    Gramatikov BI
    Biomed Eng Online; 2017 Apr; 16(1):52. PubMed ID: 28449714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated detection of ocular alignment with binocular retinal birefringence scanning.
    Hunter DG; Shah AS; Sau S; Nassif D; Guyton DL
    Appl Opt; 2003 Jun; 42(16):3047-53. PubMed ID: 12790456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated detection of foveal fixation by use of retinal birefringence scanning.
    Hunter DG; Patel SN; Guyton DL
    Appl Opt; 1999 Mar; 38(7):1273-9. PubMed ID: 18305742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Birefringence of the central cornea in children assessed with scanning laser polarimetry.
    Irsch K; Shah AA
    J Biomed Opt; 2012 Aug; 17(8):086001. PubMed ID: 23224188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of central fixation using short-time autoregressive spectral estimation during retinal birefringence scanning.
    Gramatikov BI
    Med Eng Phys; 2015 Sep; 37(9):905-10. PubMed ID: 26213271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease.
    Bagga H; Greenfield DS; Knighton RW
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):1969-76. PubMed ID: 12714631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A no-moving-parts sensor for the detection of eye fixation using polarised light and retinal birefringence information.
    Gramatikov BI; Guyton DL
    J Med Eng Technol; 2017 May; 41(4):249-256. PubMed ID: 28122478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A device for continuous monitoring of true central fixation based on foveal birefringence.
    Gramatikov B; Irsch K; Müllenbroich M; Frindt N; Qu Y; Gutmark R; Wu YK; Guyton D
    Ann Biomed Eng; 2013 Sep; 41(9):1968-78. PubMed ID: 23645511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography.
    Fanjul-Vélez F; Pircher M; Baumann B; Götzinger E; Hitzenberger CK; Arce-Diego JL
    J Biomed Opt; 2010; 15(5):056004. PubMed ID: 21054098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor.
    Malik BH; Coté GL
    J Biomed Opt; 2010; 15(3):037012. PubMed ID: 20615041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal nerve fiber layer measurements by scanning laser polarimetry with enhanced corneal compensation in healthy subjects.
    Rao HL; Venkatesh CR; Vidyasagar K; Yadav RK; Addepalli UK; Jude A; Senthil S; Garudadri CS
    J Glaucoma; 2014 Dec; 23(9):589-93. PubMed ID: 23429619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of uncompensated corneal polarization on the detection of localized retinal nerve fiber layer defects.
    Kogure S; Kohwa H; Tsukahara S
    Ophthalmic Res; 2008; 40(2):61-8. PubMed ID: 18230917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Birefringence-based eye fixation monitor with no moving parts.
    Gramatikov BI; Zalloum OH; Wu YK; Hunter DG; Guyton DL
    J Biomed Opt; 2006; 11(3):34025. PubMed ID: 16822074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry.
    Weinreb RN; Bowd C; Greenfield DS; Zangwill LM
    Arch Ophthalmol; 2002 Jul; 120(7):901-6. PubMed ID: 12096960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable corneal compensation improves discrimination between normal and glaucomatous eyes with the scanning laser polarimeter.
    Tannenbaum DP; Hoffman D; Lemij HG; Garway-Heath DF; Greenfield DS; Caprioli J
    Ophthalmology; 2004 Feb; 111(2):259-64. PubMed ID: 15019373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.