These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21750772)

  • 21. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes.
    Bagga H; Greenfield DS; Feuer W; Knighton RW
    Am J Ophthalmol; 2003 Apr; 135(4):521-9. PubMed ID: 12654370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina.
    Pircher M; Götzinger E; Baumann B; Hitzenberger CK
    J Biomed Opt; 2007; 12(4):041210. PubMed ID: 17867799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of enhanced corneal compensation in scanning laser polarimetry: comparison with variable corneal compensation on human eyes undergoing LASIK.
    Tóth M; Holló G
    J Glaucoma; 2006 Feb; 15(1):53-9. PubMed ID: 16378019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corneal birefringence mapped by scanning laser polarimetry.
    Knighton RW; Huang XR; Cavuoto LA
    Opt Express; 2008 Sep; 16(18):13738-51. PubMed ID: 18772985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography.
    Lim Y; Yamanari M; Fukuda S; Kaji Y; Kiuchi T; Miura M; Oshika T; Yasuno Y
    Biomed Opt Express; 2011 Aug; 2(8):2392-402. PubMed ID: 21833376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes.
    Bowd C; Zangwill LM; Weinreb RN
    Arch Ophthalmol; 2003 Jul; 121(7):961-6. PubMed ID: 12860798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Longitudinal measurement variability of corneal birefringence and retinal nerve fiber layer thickness in scanning laser polarimetry with variable corneal compensation.
    Mai TA; Lemij HG
    Arch Ophthalmol; 2008 Oct; 126(10):1359-64. PubMed ID: 18852413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of the retinal nerve fiber layer of the normal and glaucomatous monkey with scanning laser polarimetry.
    Weinreb RN; Bowd C; Zangwill LM
    Trans Am Ophthalmol Soc; 2002; 100():161-6; discussion 166-7. PubMed ID: 12545690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scanning laser polarimetry in monkey eyes using variable corneal polarization compensation.
    Weinreb RN; Bowd C; Zangwill LM
    J Glaucoma; 2002 Oct; 11(5):378-84. PubMed ID: 12362075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal.
    Gramatikov B
    Biomed Eng Online; 2013 May; 12():41. PubMed ID: 23668264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinal nerve fiber layer measurements do not change after LASIK for high myopia as measured by scanning laser polarimetry with custom compensation.
    Choplin NT; Schallhorn SC; Sinai M; Tanzer D; Tidwell JL; Zhou Q
    Ophthalmology; 2005 Jan; 112(1):92-7. PubMed ID: 15629826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical stress birefringence of optical plates.
    Liu T; Hu J; Zhu L; Zhou R; Zhang C; Gu L; Sun X; Yu J; Zeng A; Huang H
    Appl Opt; 2020 Aug; 59(24):7371-7375. PubMed ID: 32902505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry.
    Greenfield DS; Knighton RW; Huang XR
    Am J Ophthalmol; 2000 Jun; 129(6):715-22. PubMed ID: 10926978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between scanning laser polarimetry with enhanced corneal compensation and with variable corneal compensation.
    Kim KH; Choi J; Lee CH; Cho BJ; Kook MS
    Korean J Ophthalmol; 2008 Mar; 22(1):18-25. PubMed ID: 18323701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prospective evaluation of factors associated with post-LASIK corneal birefringence with scanning laser polarimetry.
    Shoji T; Takahashi H; Park M; Okazaki K; Tanito M; Chihara E
    J Glaucoma; 2007 Jan; 16(1):137-45. PubMed ID: 17224764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correction for corneal polarization axis improves the discriminating power of scanning laser polarimetry.
    Greenfield DS; Knighton RW; Feuer WJ; Schiffman JC; Zangwill L; Weinreb RN
    Am J Ophthalmol; 2002 Jul; 134(1):27-33. PubMed ID: 12095804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography.
    Elmaanaoui B; Wang B; Dwelle JC; McElroy AB; Liu SS; Rylander HG; Milner TE
    Opt Express; 2011 May; 19(11):10252-68. PubMed ID: 21643283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retinal nerve fiber layer retardation measurements using a polarization-sensitive fundus camera.
    Fukuma Y; Okazaki Y; Shioiri T; Iida Y; Kikuta H; Shirakashi M; Yaoeda K; Abe H; Ohnuma K
    J Biomed Opt; 2011 Jul; 16(7):076017. PubMed ID: 21806278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry.
    Brink HB; van Blokland GJ
    J Opt Soc Am A; 1988 Jan; 5(1):49-57. PubMed ID: 3351653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Individualized compensation of anterior segment birefringence during scanning laser polarimetry.
    Zhou Q; Weinreb RN
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2221-8. PubMed ID: 12091420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.