BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21750780)

  • 1. Performance of full-pupil line-scanning reflectance confocal microscopy in human skin and oral mucosa in vivo.
    Larson B; Abeytunge S; Rajadhyaksha M
    Biomed Opt Express; 2011 Jul; 2(7):2055-67. PubMed ID: 21750780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of pupil design for point-scanning and line-scanning confocal microscopy.
    Patel YG; Rajadhyaksha M; Dimarzio CA
    Biomed Opt Express; 2011 Aug; 2(8):2231-42. PubMed ID: 21833360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Line-scanning reflectance confocal microscopy of human skin: comparison of full-pupil and divided-pupil configurations.
    Gareau DS; Abeytunge S; Rajadhyaksha M
    Opt Lett; 2009 Oct; 34(20):3235-7. PubMed ID: 19838284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confocal theta line-scanning microscope for imaging human tissues.
    Dwyer PJ; DiMarzio CA; Rajadhyaksha M
    Appl Opt; 2007 Apr; 46(10):1843-51. PubMed ID: 17356629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confocal reflectance theta line scanning microscope for imaging human skin in vivo.
    Dwyer PJ; DiMarzio CA; Zavislan JM; Fox WJ; Rajadhyaksha M
    Opt Lett; 2006 Apr; 31(7):942-4. PubMed ID: 16599219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A handheld laser scanning confocal reflectance imaging-confocal Raman microspectroscopy system.
    Patil CA; Arrasmith CL; Mackanos MA; Dickensheets DL; Mahadevan-Jansen A
    Biomed Opt Express; 2012 Mar; 3(3):488-502. PubMed ID: 22435097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free in vivo pathology of human epithelia with a high-speed handheld dual-axis confocal microscope.
    Yin C; Wei L; Abeytunge S; Peterson G; Rajadhyaksha M; Liu J
    J Biomed Opt; 2019 Mar; 24(3):30501. PubMed ID: 32717147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflectance confocal endomicroscope with optical axial scanning for in vivo imaging of the oral mucosa.
    Jabbour JM; Bentley JL; Malik BH; Nemechek J; Warda J; Cuenca R; Cheng S; Jo JA; Maitland KC
    Biomed Opt Express; 2014 Nov; 5(11):3781-91. PubMed ID: 25426310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A liquid optical phantom with tissue-like heterogeneities for confocal microscopy.
    Wang D; Chen Y; Liu JT
    Biomed Opt Express; 2012 Dec; 3(12):3153-60. PubMed ID: 23243566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology.
    Yin C; Glaser AK; Leigh SY; Chen Y; Wei L; Pillai PC; Rosenberg MC; Abeytunge S; Peterson G; Glazowski C; Sanai N; Mandella MJ; Rajadhyaksha M; Liu JT
    Biomed Opt Express; 2016 Feb; 7(2):251-63. PubMed ID: 26977337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of a theta line-scanning confocal microscope.
    Simon B; Dimarzio CA
    J Biomed Opt; 2007; 12(6):064020. PubMed ID: 18163836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.
    Serban ED; Farnetani F; Pellacani G; Constantin MM
    Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes.
    Glazowski C; Rajadhyaksha M
    J Biomed Opt; 2012 Aug; 17(8):085001. PubMed ID: 23224184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pixel reassignment in image scanning microscopy: a re-evaluation.
    Sheppard CJR; Castello M; Tortarolo G; Deguchi T; Koho SV; Vicidomini G; Diaspro A
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jan; 37(1):154-162. PubMed ID: 32118893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture.
    Liu JT; Mandella MJ; Crawford JM; Contag CH; Wang TD; Kino GS
    J Biomed Opt; 2008; 13(3):034020. PubMed ID: 18601565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Video-rate confocal scanning laser microscope for imaging human tissues in vivo.
    Rajadhyaksha M; Anderson RR; Webb RH
    Appl Opt; 1999 Apr; 38(10):2105-15. PubMed ID: 18319771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pupil plane differential detection microscopy.
    Paudel HP; Alt C; Runnels J; Lin CP
    Opt Lett; 2018 Sep; 43(18):4410-4412. PubMed ID: 30211877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image scanning microscopy with multiphoton excitation or Bessel beam illumination.
    Sheppard CJR; Castello M; Tortarolo G; Slenders E; Deguchi T; Koho SV; Vicidomini G; Diaspro A
    J Opt Soc Am A Opt Image Sci Vis; 2020 Oct; 37(10):1639-1649. PubMed ID: 33104611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the tissue-imaging performance of confocal microscope architectures via Monte Carlo simulations.
    Chen Y; Wang D; Liu JT
    Opt Lett; 2012 Nov; 37(21):4495-7. PubMed ID: 23114341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.