These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21750810)

  • 1. Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery.
    Aran K; Fok A; Sasso LA; Kamdar N; Guan Y; Sun Q; Ündar A; Zahn JD
    Lab Chip; 2011 Sep; 11(17):2858-68. PubMed ID: 21750810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.
    Li X; Chen W; Liu G; Lu W; Fu J
    Lab Chip; 2014 Jul; 14(14):2565-75. PubMed ID: 24895109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size selective DNA transport through a nanoporous membrane in a PDMS microfluidic device.
    Sheng Y; Bowser MT
    Analyst; 2012 Mar; 137(5):1144-51. PubMed ID: 22262059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells.
    Fan X; Jia C; Yang J; Li G; Mao H; Jin Q; Zhao J
    Biosens Bioelectron; 2015 Sep; 71():380-386. PubMed ID: 25950932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous monitoring of inflammation biomarkers during simulated cardiopulmonary bypass using a microfluidic immunoassay device - a pilot study.
    Sasso LA; Aran K; Guan Y; Ündar A; Zahn JD
    Artif Organs; 2013 Jan; 37(1):E9-E17. PubMed ID: 23305589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects.
    Tripathi S; Kumar YV; Agrawal A; Prabhakar A; Joshi SS
    Sci Rep; 2016 Jun; 6():26749. PubMed ID: 27279146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood plasma separation in microfluidic channels using flow rate control.
    Yang S; Undar A; Zahn JD
    ASAIO J; 2005; 51(5):585-90. PubMed ID: 16322722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay.
    Sasso LA; Undar A; Zahn JD
    Microfluid Nanofluidics; 2010 Aug; 9(2-3):253-265. PubMed ID: 20694166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle sorting using a porous membrane in a microfluidic device.
    Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN
    Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Two Miniaturized Cardiopulmonary Bypass Systems Regarding Inflammatory Response.
    Farag M; Patil NP; Sabashnikov A; Arif R; Szabó G; Kallenbach K; Ruhparwar A; Karck M; Brenner T; Hofer S; Weymann A
    Artif Organs; 2017 Feb; 41(2):139-145. PubMed ID: 27653813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide-surface pore microfiltration membrane drastically improves sieving decay in TFF-based perfusion cell culture and streamline chromatography integration for continuous bioprocessing.
    Pinto NDS; Brower M
    Biotechnol Bioeng; 2020 Nov; 117(11):3336-3344. PubMed ID: 32667680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of biocompatible cardiopulmonary bypass circuit use during pediatric open heart surgery.
    Deptula J; Glogowski K; Merrigan K; Hanson K; Felix D; Hammel J; Duncan K
    J Extra Corpor Technol; 2006 Mar; 38(1):22-6. PubMed ID: 16637519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hemobag: the modern ultrafiltration system for patients undergoing cardiopulmonary by pass.
    Colli A; Balduzzi S; Ruyra X
    J Cardiothorac Surg; 2012 Jun; 7():55. PubMed ID: 22697396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures.
    Yang S; Ji B; Undar A; Zahn JD
    ASAIO J; 2006; 52(6):698-704. PubMed ID: 17117061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiopulmonary bypass in the cat.
    Brourman JD; Schertel ER; Holt DW; Olshove VA
    Vet Surg; 2002; 31(5):412-7. PubMed ID: 12209411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel augmented venous-drainage model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming.
    Jiang X; Gu T; Liu Y; Wang C; Shi E; Zhang G
    Perfusion; 2018 May; 33(4):297-302. PubMed ID: 29258403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inflammatory and hemostatic response to cardiopulmonary bypass in pediatric population: feasibility of seriological testing of multiple biomarkers.
    Aĝirbaşli M; Nguyen ML; Win K; Kunselman AR; Clark JB; Myers JL; Undar A
    Artif Organs; 2010 Nov; 34(11):987-95. PubMed ID: 21092041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Autotransfusion after cardiac surgery. Hematological, biochemical and immunological properties of shed mediastinal blood].
    Salas Millán J; de Vega N; Carmona Aurioles J; Negri Arjona S; García-Vallejo J; Muñoz Gómez M
    Rev Esp Anestesiol Reanim; 2001 Mar; 48(3):122-30. PubMed ID: 11333796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cardiopulmonary bypass with low-priming volume on clinical outcomes in children undergoing congenital heart disease surgery.
    Wang L; Chen Q; Qiu YQ; Ye JX; Du JZ; Lv XC; Hou YT; Chen LW
    J Cardiothorac Surg; 2020 May; 15(1):118. PubMed ID: 32460864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The early inflammatory response in a mini-cardiopulmonary bypass system: a prospective randomized study.
    Kiaii B; Fox S; Swinamer SA; Rayman R; Higgins J; Cleland A; Fernandes P; MacDonald J; Dobkowski WB; Stitt LW; Novick RJ; Singh B; Bureau Y; Summers K
    Innovations (Phila); 2012; 7(1):23-32. PubMed ID: 22576032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.