BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21750882)

  • 1. Size characterization and quantification of silver nanoparticles by asymmetric flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry.
    Bolea E; Jiménez-Lamana J; Laborda F; Castillo JR
    Anal Bioanal Chem; 2011 Nov; 401(9):2723-32. PubMed ID: 21750882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.
    Sánchez-García L; Bolea E; Laborda F; Cubel C; Ferrer P; Gianolio D; da Silva I; Castillo JR
    J Chromatogr A; 2016 Mar; 1438():205-15. PubMed ID: 26903472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospects and difficulties in TiO₂ nanoparticles analysis in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry.
    López-Heras I; Madrid Y; Cámara C
    Talanta; 2014 Jun; 124():71-8. PubMed ID: 24767448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and quantification of silver nanoparticles in nutraceuticals and beverages by asymmetric flow field flow fractionation coupled with inductively coupled plasma mass spectrometry.
    Ramos K; Ramos L; Cámara C; Gómez-Gómez MM
    J Chromatogr A; 2014 Dec; 1371():227-36. PubMed ID: 25456601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona.
    Mudalige TK; Qu H; Linder SW
    Anal Chem; 2015 Jul; 87(14):7395-401. PubMed ID: 26095720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry.
    Hoque ME; Khosravi K; Newman K; Metcalfe CD
    J Chromatogr A; 2012 Apr; 1233():109-15. PubMed ID: 22381889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet-visible detectors.
    Geiss O; Cascio C; Gilliland D; Franchini F; Barrero-Moreno J
    J Chromatogr A; 2013 Dec; 1321():100-8. PubMed ID: 24238704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS.
    Loeschner K; Navratilova J; Købler C; Mølhave K; Wagner S; von der Kammer F; Larsen EH
    Anal Bioanal Chem; 2013 Oct; 405(25):8185-95. PubMed ID: 23887279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.
    Poda AR; Bednar AJ; Kennedy AJ; Harmon A; Hull M; Mitrano DM; Ranville JF; Steevens J
    J Chromatogr A; 2011 Jul; 1218(27):4219-25. PubMed ID: 21247580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size characterization and quantification of titanium dioxide nano- and microparticles-based products by Asymmetrical Flow Field-Flow Fractionation coupled to Dynamic Light Scattering and Inductively Coupled Plasma Mass Spectrometry.
    Ojeda D; Taboada-López MV; Bolea E; Pérez-Arantegui J; Bermejo-Barrera P; Moreda-Piñeiro A; Laborda F
    Anal Chim Acta; 2020 Jul; 1122():20-30. PubMed ID: 32503740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.
    Loeschner K; Navratilova J; Legros S; Wagner S; Grombe R; Snell J; von der Kammer F; Larsen EH
    J Chromatogr A; 2013 Jan; 1272():116-25. PubMed ID: 23261297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix.
    Heroult J; Nischwitz V; Bartczak D; Goenaga-Infante H
    Anal Bioanal Chem; 2014 Jun; 406(16):3919-27. PubMed ID: 24817355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous determination of size and quantification of silica nanoparticles by asymmetric flow field-flow fractionation coupled to ICPMS using silica nanoparticles standards.
    Barahona F; Geiss O; Urbán P; Ojea-Jimenez I; Gilliland D; Barrero-Moreno J
    Anal Chem; 2015 Mar; 87(5):3039-47. PubMed ID: 25627280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles.
    Hagendorfer H; Kaegi R; Traber J; Mertens SF; Scherrers R; Ludwig C; Ulrich A
    Anal Chim Acta; 2011 Nov; 706(2):367-78. PubMed ID: 22023875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors.
    Tan ZQ; Liu JF; Guo XR; Yin YG; Byeon SK; Moon MH; Jiang GB
    Anal Chem; 2015 Aug; 87(16):8441-7. PubMed ID: 26222150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.
    Meisterjahn B; Wagner S; von der Kammer F; Hennecke D; Hofmann T
    J Chromatogr A; 2016 Apr; 1440():150-159. PubMed ID: 26948764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of hydrodynamic chromatography coupled to inductively coupled plasma mass spectrometry for speciation of dissolved and nanoparticulate gold and silver.
    Jiménez MS; Bakir M; Isábal D; Gómez MT; Pérez-Arantegui J; Castillo JR; Laborda F
    Anal Bioanal Chem; 2021 Mar; 413(6):1689-1699. PubMed ID: 33528600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AF4-UV-ICP-MS for detection and quantification of silver nanoparticles in seafood after enzymatic hydrolysis.
    Taboada-López MV; Bartczak D; Cuello-Núñez S; Goenaga-Infante H; Bermejo-Barrera P; Moreda-Piñeiro A
    Talanta; 2021 Sep; 232():122504. PubMed ID: 34074453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection.
    Loeschner K; Navratilova J; Grombe R; Linsinger TP; Købler C; Mølhave K; Larsen EH
    Food Chem; 2015 Aug; 181():78-84. PubMed ID: 25794724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.