These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 21751312)

  • 1. Superhydrophobic-superhydrophilic micropatterning: towards genome-on-a-chip cell microarrays.
    Geyer FL; Ueda E; Liebel U; Grau N; Levkin PA
    Angew Chem Int Ed Engl; 2011 Aug; 50(36):8424-7. PubMed ID: 21751312
    [No Abstract]   [Full Text] [Related]  

  • 2. Droplet-Array (DA) Sandwich Chip: A Versatile Platform for High-Throughput Cell Screening Based on Superhydrophobic-Superhydrophilic Micropatterning.
    Popova AA; Schillo SM; Demir K; Ueda E; Nesterov-Mueller A; Levkin PA
    Adv Mater; 2015 Sep; 27(35):5217-22. PubMed ID: 26255809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.
    Ueda E; Feng W; Levkin PA
    Adv Healthc Mater; 2016 Oct; 5(20):2646-2654. PubMed ID: 27568500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of cell adhesive behaviors on superhydrophobic, superhydrophilic, and micropatterned superhydrophobic/superhydrophilic surfaces to their surface chemistry.
    Ishizaki T; Saito N; Takai O
    Langmuir; 2010 Jun; 26(11):8147-54. PubMed ID: 20131757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell micropatterning on superhydrophobic diamond nanowires.
    Marcon L; Addad A; Coffinier Y; Boukherroub R
    Acta Biomater; 2013 Jan; 9(1):4585-91. PubMed ID: 22922066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropatterning hydrophobic liquid on a porous polymer surface for long-term selective cell-repellency.
    Ueda E; Levkin PA
    Adv Healthc Mater; 2013 Nov; 2(11):1425-9. PubMed ID: 23712893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of trapped air in the formation of cell-and-protein micropatterns on superhydrophobic/superhydrophilic microtemplated surfaces.
    Huang Q; Lin L; Yang Y; Hu R; Vogler EA; Lin C
    Biomaterials; 2012 Nov; 33(33):8213-20. PubMed ID: 22917736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printable superhydrophilic-superhydrophobic micropatterns based on supported lipid layers.
    Li JS; Ueda E; Nallapaneni A; Li LX; Levkin PA
    Langmuir; 2012 Jun; 28(22):8286-91. PubMed ID: 22594681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diverse macroporous spheres synthesized by multiple emulsion polymerization for protein analyses.
    Liang SS; Chen SL; Chen SH
    Chem Commun (Camb); 2011 Aug; 47(29):8385-7. PubMed ID: 21709876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile approach to superhydrophilic-superhydrophobic patterns in porous polymer films.
    Zahner D; Abagat J; Svec F; Fréchet JM; Levkin PA
    Adv Mater; 2011 Jul; 23(27):3030-4. PubMed ID: 21598317
    [No Abstract]   [Full Text] [Related]  

  • 11. Rewritable superhydrophilic-superhydrophobic patterns on a sintered titanium dioxide substrate.
    Nakata K; Nishimoto S; Yuda Y; Ochiai T; Murakami T; Fujishima A
    Langmuir; 2010 Jul; 26(14):11628-30. PubMed ID: 20552954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymeric photoresist nanoparticles: light-induced degradation of hydrophobic polymers in aqueous dispersion.
    Klinger D; Landfester K
    Macromol Rapid Commun; 2011 Dec; 32(24):1979-85. PubMed ID: 22095758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image printing on the surface of anti-biofouling zwitterionic polymer brushes by ion beam irradiation.
    Kitano H; Suzuki H; Kondo T; Sasaki K; Iwanaga S; Nakamura M; Ohno K; Saruwatari Y
    Macromol Biosci; 2011 Apr; 11(4):557-64. PubMed ID: 21243650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous evaluation of toxicities using a mammalian cell array chip prepared by photocatalytic lithography.
    Komori K; Nada J; Nishikawa M; Notsu H; Tatsuma T; Sakai Y
    Anal Chim Acta; 2009 Oct; 653(2):222-7. PubMed ID: 19808118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Addressable micropatterning of multiple proteins and cells by microscope projection photolithography based on a protein friendly photoresist.
    Kim M; Choi JC; Jung HR; Katz JS; Kim MG; Doh J
    Langmuir; 2010 Jul; 26(14):12112-8. PubMed ID: 20565061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering porous polyurethane scaffolds by photografting polymerization of methacrylic acid for improved endothelial cell compatibility.
    Zhu Y; Gao C; Guan J; Shen J
    J Biomed Mater Res A; 2003 Dec; 67(4):1367-73. PubMed ID: 14624524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The softer and more hydrophobic the better: influence of the side chain of polymethacrylate nanoparticles for cellular uptake.
    Lorenz S; Hauser CP; Autenrieth B; Weiss CK; Landfester K; Mailänder V
    Macromol Biosci; 2010 Sep; 10(9):1034-42. PubMed ID: 20572275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation.
    Ramsey JD; Collins GE
    Anal Chem; 2005 Oct; 77(20):6664-70. PubMed ID: 16223254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides.
    Pastine SJ; Okawa D; Kessler B; Rolandi M; Llorente M; Zettl A; Fréchet JM
    J Am Chem Soc; 2008 Apr; 130(13):4238-9. PubMed ID: 18331043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput analyses of gene functions on a cell chip by electroporation.
    Kato K; Iwata H
    Methods Mol Biol; 2011; 706():181-90. PubMed ID: 21104064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.