These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 21751821)
1. Numerical approach to speciation and estimation of parameters used in modeling trace metal bioavailability. Sander SG; Hunter KA; Harms H; Wells M Environ Sci Technol; 2011 Aug; 45(15):6388-95. PubMed ID: 21751821 [TBL] [Abstract][Full Text] [Related]
2. Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Worms I; Simon DF; Hassler CS; Wilkinson KJ Biochimie; 2006 Nov; 88(11):1721-31. PubMed ID: 17049417 [TBL] [Abstract][Full Text] [Related]
3. Assessment of accuracy and precision in speciation analysis by competitive ligand equilibration-cathodic stripping voltammetry (CLE-CSV) and application to Antarctic samples. Monticelli D; Dossi C; Castelletti A Anal Chim Acta; 2010 Aug; 675(2):116-24. PubMed ID: 20800722 [TBL] [Abstract][Full Text] [Related]
4. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry. Ndungu K Environ Sci Technol; 2012 Jul; 46(14):7644-52. PubMed ID: 22724636 [TBL] [Abstract][Full Text] [Related]
5. Miniaturization in voltammetry: ultratrace element analysis and speciation with twenty-fold sample size reduction. Monticelli D; Laglera LM; Caprara S Talanta; 2014 Oct; 128():273-7. PubMed ID: 25059160 [TBL] [Abstract][Full Text] [Related]
6. Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean. Jakuba RW; Moffett JW; Saito MA Anal Chim Acta; 2008 May; 614(2):143-52. PubMed ID: 18420044 [TBL] [Abstract][Full Text] [Related]
7. Effect of organic complexation on copper accumulation and toxicity to the estuarine red macroalga Ceramium tenuicorne: a test of the free ion activity model. Ytreberg E; Karlsson J; Hoppe S; Eklund B; Ndungu K Environ Sci Technol; 2011 Apr; 45(7):3145-53. PubMed ID: 21391651 [TBL] [Abstract][Full Text] [Related]
8. Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms. Veltman K; Huijbregts MA; Hendriks AJ Environ Sci Technol; 2010 Jul; 44(13):5022-8. PubMed ID: 20515030 [TBL] [Abstract][Full Text] [Related]
9. Determination of metal speciation by reverse titrations. Nuester J; van den Berg CM Anal Chem; 2005 Jan; 77(1):11-9. PubMed ID: 15623273 [TBL] [Abstract][Full Text] [Related]
10. Speciation of trace metals in natural waters: the influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper. Louis Y; Cmuk P; Omanović D; Garnier C; Lenoble V; Mounier S; Pizeta I Anal Chim Acta; 2008 Jan; 606(1):37-44. PubMed ID: 18068768 [TBL] [Abstract][Full Text] [Related]
11. The biotic ligand model for plants and metals: technical challenges for field application. Antunes PM; Berkelaar EJ; Boyle D; Hale BA; Hendershot W; Voigt A Environ Toxicol Chem; 2006 Mar; 25(3):875-82. PubMed ID: 16566174 [TBL] [Abstract][Full Text] [Related]
12. Chemical speciation in natural and brine sea waters. Tepavitcharova S; Todorov T; Rabadjieva D; Dassenakis M; Paraskevopoulou V Environ Monit Assess; 2011 Sep; 180(1-4):217-27. PubMed ID: 21125420 [TBL] [Abstract][Full Text] [Related]
13. Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand. Wang R; Chakrabarti CL Anal Chim Acta; 2008 May; 614(2):153-60. PubMed ID: 18420045 [TBL] [Abstract][Full Text] [Related]
14. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity. Kiaune L; Singhasemanon N Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846 [TBL] [Abstract][Full Text] [Related]
15. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching. Tait TN; McGeer JC; Smith DS Bull Environ Contam Toxicol; 2018 Jan; 100(1):76-81. PubMed ID: 29273962 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects. Mota AM; Pinheiro JP; Simões Gonçalves ML J Phys Chem A; 2012 Jun; 116(25):6433-42. PubMed ID: 22540875 [TBL] [Abstract][Full Text] [Related]
17. Determination of trace metals in seawater by an automated flow injection ion chromatograph pretreatment system with ICPMS. Ho TY; Chien CT; Wang BN; Siriraks A Talanta; 2010 Sep; 82(4):1478-84. PubMed ID: 20801359 [TBL] [Abstract][Full Text] [Related]
18. Metal accumulation by stream bryophytes, related to chemical speciation. Tipping E; Vincent CD; Lawlor AJ; Lofts S Environ Pollut; 2008 Dec; 156(3):936-43. PubMed ID: 18541353 [TBL] [Abstract][Full Text] [Related]
19. Modeling and separation-detection methods to evaluate the speciation of metals for toxicity assessment. Caruso JA; Wuilloud RG; Altamirano JC; Harris WR J Toxicol Environ Health B Crit Rev; 2006; 9(1):41-61. PubMed ID: 16393869 [TBL] [Abstract][Full Text] [Related]
20. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model. Hatano A; Shoji R Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]