These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21751821)

  • 21. Trace metals in Antarctica related to climate change and increasing human impact.
    Bargagli R
    Rev Environ Contam Toxicol; 2000; 166():129-73. PubMed ID: 10868078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.
    Turner A; Mawji E
    Environ Pollut; 2005 May; 135(2):235-44. PubMed ID: 15734583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions.
    Wang XP; Shan XQ; Zhang SZ; Wen B
    Chemosphere; 2004 May; 55(6):811-22. PubMed ID: 15041285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M; Davranche M; Gruau G; Petitjean P
    J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmental risk assessment of metals: tools for incorporating bioavailability.
    Janssen CR; Heijerick DG; De Schamphelaere KA; Allen HE
    Environ Int; 2003 Mar; 28(8):793-800. PubMed ID: 12605929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc.
    Gandhi N; Diamond ML; van de Meent D; Huijbregts MA; Peijnenburg WJ; Guinée J
    Environ Sci Technol; 2010 Jul; 44(13):5195-201. PubMed ID: 20536257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of trace element geochemistry in continuous flow-through microcosms: a preliminary step to environmentally meaningful ecotoxicological experiments.
    Kottelat R; Vignati DA; Garcia-Bravo A; Dominik J; Ferrari BJ
    Chemosphere; 2010 Dec; 81(11):1407-15. PubMed ID: 20926114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper and nickel speciation in mine effluents by combination of two independent techniques.
    Chakraborty P; Zhao J; Chakrabarti CL
    Anal Chim Acta; 2009 Mar; 636(1):70-6. PubMed ID: 19231358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The origin of speciation: trace metal kinetics over natural water/sediment interfaces and the consequences for bioaccumulation.
    Vink JP
    Environ Pollut; 2009 Feb; 157(2):519-27. PubMed ID: 18995939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Voltammetric determination of trace metals Zn2+, Cd2+, Pb2+, Cu2+, Co+2 and Ni+2 in some medicinally important plants from Western Ghats, Karnataka State, India.
    Lokesh SV; Sherigara BS; Naik HS; Shivaraj Y; Satpati AK
    J Environ Sci Eng; 2008 Jan; 50(1):69-74. PubMed ID: 19192930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong colloidal and dissolved organic ligands binding copper and zinc in rivers.
    Hoffmann SR; Shafer MM; Armstrong DE
    Environ Sci Technol; 2007 Oct; 41(20):6996-7002. PubMed ID: 17993139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM.
    François L; Fortin C; Campbell PG
    Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model (BLM).
    Hatano A; Shoji R
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan; 151(1):25-32. PubMed ID: 19689929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in instrumental methods for the measurement and speciation of trace metals.
    Savory J; Herman MM
    Ann Clin Lab Sci; 1999; 29(2):118-26. PubMed ID: 10219699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of atmospheric deposition of anthropogenic and natural trace metals on Northwestern Mediterranean surface waters: a box model assessment.
    Heimbürger LE; Migon C; Cossa D
    Environ Pollut; 2011 Jun; 159(6):1629-34. PubMed ID: 21435758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulatory consideration of bioavailability for metals: simplification of input parameters for the chronic copper biotic ligand model.
    Peters A; Merrington G; de Schamphelaere K; Delbeke K
    Integr Environ Assess Manag; 2011 Jul; 7(3):437-44. PubMed ID: 21082669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of marine cyanobacteria in trace metal bioavailability in seawater.
    Leão PN; Vasconcelos MT; Vasconcelos VM
    Microb Ecol; 2007 Jan; 53(1):104-9. PubMed ID: 17186147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in freshwater risk assessment: improved accuracy of dissolved organic matter-metal speciation prediction and rapid biological validation.
    Zhang X; Li B; Deng J; Qin B; Wells M; Tefsen B
    Ecotoxicol Environ Saf; 2020 Oct; 202():110848. PubMed ID: 32570102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition.
    Duval JF; Qian S
    J Phys Chem A; 2009 Nov; 113(46):12791-804. PubMed ID: 19810749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.