These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2175202)

  • 1. Control of proteoliposomal cytochrome c oxidase: the partial reactions.
    Nicholls P
    Biochem Cell Biol; 1990 Sep; 68(9):1135-41. PubMed ID: 2175202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of proteoliposomal cytochrome c oxidase: the overall reaction.
    Nicholls P; Cooper CE; Wrigglesworth JM
    Biochem Cell Biol; 1990 Sep; 68(9):1128-34. PubMed ID: 2175201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of membrane potential and pH gradient on electron transfer in cytochrome oxidase.
    Moroney PM; Scholes TA; Hinkle PC
    Biochemistry; 1984 Oct; 23(21):4991-7. PubMed ID: 6093868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria.
    Morgan JE; Wikström M
    Biochemistry; 1991 Jan; 30(4):948-58. PubMed ID: 1846562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The steady state behaviour of cytochrome c oxidase in proteoliposomes.
    Nicholls P
    FEBS Lett; 1993 Jul; 327(2):194-8. PubMed ID: 8392952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of electron transfer by the electrochemical potential gradient in cytochrome-c oxidase reconstituted into phospholipid vesicles.
    Sarti P; Malatesta F; Antonini G; Vallone B; Brunori M
    J Biol Chem; 1990 Apr; 265(10):5554-60. PubMed ID: 2156821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.
    Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P
    Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism by which oxygen and cytochrome c increase the rate of electron transfer from cytochrome a to cytochrome a3 of cytochrome c oxidase.
    Bickar D; Turrens JF; Lehninger AL
    J Biol Chem; 1986 Nov; 261(31):14461-6. PubMed ID: 3021740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent control of respiration in cytochrome c oxidase vesicles by pH and electrical gradients.
    Gregory L; Ferguson-Miller S
    Biochemistry; 1989 Mar; 28(6):2655-62. PubMed ID: 2543448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of cytochrome c and TMPD oxidation by cytochrome c oxidase from the thermophilic bacterium, PS3.
    Nicholls P; Sone N
    Biochim Biophys Acta; 1984 Nov; 767(2):240-7. PubMed ID: 6093870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of respiration in sonicated cytochrome oxidase proteoliposomes by gated and ungated ionophores.
    Shaughnessy S; Nicholls P
    Biochem Biophys Res Commun; 1985 Apr; 128(2):1025-30. PubMed ID: 2986617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic uncoupling in proton-pumping cytochrome c oxidase: pH dependence of cytochrome c oxidation in coupled and uncoupled phospholipid vesicles.
    Maison-Peteri B; Malmström BG
    Biochemistry; 1989 Apr; 28(8):3156-60. PubMed ID: 2545250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stopped-flow studies of cytochrome oxidase reconstituted into liposomes: proton pumping and control of activity.
    Brunori M; Antonini G; Colosimo A; Malatesta F; Sarti P; Jones MG; Wilson MT
    J Inorg Biochem; 1985; 23(3-4):373-9. PubMed ID: 2410570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of proteoliposomes containing cytochrome oxidase in the submitochondrial orientation.
    Cooper CE; Nicholls P
    FEBS Lett; 1987 Oct; 223(1):155-60. PubMed ID: 2822477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of respiration in proteoliposomes containing cytochrome aa3. I. Stimulation by valinomycin and uncoupler.
    Hansen FB; Miller M; Nicholls P
    Biochim Biophys Acta; 1978 Jun; 502(3):385-99. PubMed ID: 207320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome c oxidase: biphasic kinetics result from incomplete reduction of cytochrome a by cytochrome c bound to the high-affinity site.
    Ortega-Lopez J; Robinson NC
    Biochemistry; 1995 Aug; 34(31):10000-8. PubMed ID: 7632672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acids as modulators of cytochrome c oxidase in proteoliposomes.
    Sharpe M; Perin I; Wrigglesworth J; Nicholls P
    Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):557-61. PubMed ID: 8973566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of drugs with a model membrane protein. Effects of local anesthetics on electron transfer and hydrogen ion uptake in ionophore stimulated cytochrome oxidase proteoliposomes.
    Singer MA
    Biochem Pharmacol; 1983 May; 32(10):1619-25. PubMed ID: 6305365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dioxygen cycle. Spectral, kinetic, and thermodynamic characteristics of ferryl and peroxy intermediates observed by reversal of the cytochrome oxidase reaction.
    Wikström M; Morgan JE
    J Biol Chem; 1992 May; 267(15):10266-73. PubMed ID: 1316895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.