These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Advances and prospects: biotechnologically improving crop water use efficiency. Zhengbin Z; Ping X; Hongbo S; Mengjun L; Zhenyan F; Liye C Crit Rev Biotechnol; 2011 Sep; 31(3):281-93. PubMed ID: 21486183 [TBL] [Abstract][Full Text] [Related]
4. Genomics-based approaches to improve drought tolerance of crops. Tuberosa R; Salvi S Trends Plant Sci; 2006 Aug; 11(8):405-12. PubMed ID: 16843036 [TBL] [Abstract][Full Text] [Related]
5. Translational research impacting on crop productivity in drought-prone environments. Reynolds M; Tuberosa R Curr Opin Plant Biol; 2008 Apr; 11(2):171-9. PubMed ID: 18329330 [TBL] [Abstract][Full Text] [Related]
6. Advances in cereal genomics and applications in crop breeding. Varshney RK; Hoisington DA; Tyagi AK Trends Biotechnol; 2006 Nov; 24(11):490-9. PubMed ID: 16956681 [TBL] [Abstract][Full Text] [Related]
7. Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. Yadav RS; Sehgal D; Vadez V J Exp Bot; 2011 Jan; 62(2):397-408. PubMed ID: 20819788 [TBL] [Abstract][Full Text] [Related]
9. Genetic and genomic tools to improve drought tolerance in wheat. Fleury D; Jefferies S; Kuchel H; Langridge P J Exp Bot; 2010 Jul; 61(12):3211-22. PubMed ID: 20525798 [TBL] [Abstract][Full Text] [Related]
10. Plant breeding and drought in C3 cereals: what should we breed for? Araus JL; Slafer GA; Reynolds MP; Royo C Ann Bot; 2002 Jun; 89 Spec No(7):925-40. PubMed ID: 12102518 [TBL] [Abstract][Full Text] [Related]
11. Drought and salt tolerances in wild relatives for wheat and barley improvement. Nevo E; Chen G Plant Cell Environ; 2010 Apr; 33(4):670-85. PubMed ID: 20040064 [TBL] [Abstract][Full Text] [Related]
12. Identification of quantitative trait loci for carbon isotope ratio (δ Bazzer SK; Kaler AS; Ray JD; Smith JR; Fritschi FB; Purcell LC Theor Appl Genet; 2020 Jul; 133(7):2141-2155. PubMed ID: 32296861 [TBL] [Abstract][Full Text] [Related]
14. The genetic basis of water-use efficiency and yield in lettuce. Damerum A; Smith HK; Clarkson G; Truco MJ; Michelmore RW; Taylor G BMC Plant Biol; 2021 May; 21(1):237. PubMed ID: 34044761 [TBL] [Abstract][Full Text] [Related]
15. Mapping QTLs for water-use efficiency reveals the potential candidate genes involved in regulating the trait in apple under drought stress. Wang H; Zhao S; Mao K; Dong Q; Liang B; Li C; Wei Z; Li M; Ma F BMC Plant Biol; 2018 Jun; 18(1):136. PubMed ID: 29940853 [TBL] [Abstract][Full Text] [Related]
16. Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuus L.) subjected to two drought scenarios. Adiredjo AL; Navaud O; Muños S; Langlade NB; Lamaze T; Grieu P PLoS One; 2014; 9(7):e101218. PubMed ID: 24992022 [TBL] [Abstract][Full Text] [Related]
17. The carbon isotopic signature of C Eggels S; Blankenagel S; Schön CC; Avramova V Theor Appl Genet; 2021 Jun; 134(6):1663-1675. PubMed ID: 33575820 [TBL] [Abstract][Full Text] [Related]
18. Conceptual framework for drought phenotyping during molecular breeding. Salekdeh GH; Reynolds M; Bennett J; Boyer J Trends Plant Sci; 2009 Sep; 14(9):488-96. PubMed ID: 19716744 [TBL] [Abstract][Full Text] [Related]
19. Identification of causal relationships among traits related to drought resistance in Stylosanthes scabra using QTL analysis. Thumma BR; Naidu BP; Chandra A; Cameron DF; Bahnisch LM; Liu C J Exp Bot; 2001 Feb; 52(355):203-14. PubMed ID: 11283164 [TBL] [Abstract][Full Text] [Related]
20. Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population. Du W; Yu D; Fu S J Integr Plant Biol; 2009 Sep; 51(9):868-78. PubMed ID: 19723246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]