These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 21752030)

  • 21. Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen.
    Sadras VO; Richards RA
    J Exp Bot; 2014 May; 65(8):1981-95. PubMed ID: 24638898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen isotope enrichment (Delta(18)O) reflects yield potential and drought resistance in maize.
    Cabrera-Bosquet L; Sánchez C; Araus JL
    Plant Cell Environ; 2009 Nov; 32(11):1487-99. PubMed ID: 19558406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance.
    Messina CD; Podlich D; Dong Z; Samples M; Cooper M
    J Exp Bot; 2011 Jan; 62(3):855-68. PubMed ID: 21041371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans.
    Valliyodan B; Ye H; Song L; Murphy M; Shannon JG; Nguyen HT
    J Exp Bot; 2017 Apr; 68(8):1835-1849. PubMed ID: 27927997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals?
    Monneveux P; Ramírez DA; Pino MT
    Plant Sci; 2013 May; 205-206():76-86. PubMed ID: 23498865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QTLs for grain carbon isotope discrimination in field-grown barley.
    Teulat B; Merah O; Sirault X; Borries C; Waugh R; This D
    Theor Appl Genet; 2002 Dec; 106(1):118-26. PubMed ID: 12582879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drought-resistant cereals: impact on water sustainability and nutritional quality.
    Thomas WT
    Proc Nutr Soc; 2015 Aug; 74(3):191-7. PubMed ID: 25702698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops.
    Mir RR; Zaman-Allah M; Sreenivasulu N; Trethowan R; Varshney RK
    Theor Appl Genet; 2012 Aug; 125(4):625-45. PubMed ID: 22696006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of quantitative trait loci for four morphologic traits under water stress in rice (Oryza sativa L.).
    Yue B; Xue W; Luo L; Xing Y
    J Genet Genomics; 2008 Sep; 35(9):569-75. PubMed ID: 18804076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Root system architecture: opportunities and constraints for genetic improvement of crops.
    de Dorlodot S; Forster B; Pagès L; Price A; Tuberosa R; Draye X
    Trends Plant Sci; 2007 Oct; 12(10):474-81. PubMed ID: 17822944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of drought and heat stress on reproductive processes in cereals.
    Barnabás B; Jäger K; Fehér A
    Plant Cell Environ; 2008 Jan; 31(1):11-38. PubMed ID: 17971069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural variation and genetic constraints on drought tolerance.
    Juenger TE
    Curr Opin Plant Biol; 2013 Jun; 16(3):274-81. PubMed ID: 23462639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breeding for high water-use efficiency.
    Condon AG; Richards RA; Rebetzke GJ; Farquhar GD
    J Exp Bot; 2004 Nov; 55(407):2447-60. PubMed ID: 15475373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of QTLs in the breeding of high-yielding rice.
    Miura K; Ashikari M; Matsuoka M
    Trends Plant Sci; 2011 Jun; 16(6):319-26. PubMed ID: 21429786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load×QTL interactions.
    Kromdijk J; Bertin N; Heuvelink E; Molenaar J; de Visser PH; Marcelis LF; Struik PC
    J Exp Bot; 2014 Jan; 65(1):11-22. PubMed ID: 24227339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular mapping of quantitative trait loci for drought tolerance in maize plants.
    Rahman H; Pekic S; Lazic-Jancic V; Quarrie SA; Shah SM; Pervez A; Shah MM
    Genet Mol Res; 2011 May; 10(2):889-901. PubMed ID: 21644206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum L. R.Br.).
    Tharanya M; Kholova J; Sivasakthi K; Seghal D; Hash CT; Raj B; Srivastava RK; Baddam R; Thirunalasundari T; Yadav R; Vadez V
    Theor Appl Genet; 2018 Jul; 131(7):1509-1529. PubMed ID: 29679097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping QTLs for seed yield and drought susceptibility index in soybean (Glycine max L.) across different environments.
    Du W; Wang M; Fu S; Yu D
    J Genet Genomics; 2009 Dec; 36(12):721-31. PubMed ID: 20129399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenges in breeding for yield increase for drought.
    Sinclair TR
    Trends Plant Sci; 2011 Jun; 16(6):289-93. PubMed ID: 21419688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence.
    Harris K; Subudhi PK; Borrell A; Jordan D; Rosenow D; Nguyen H; Klein P; Klein R; Mullet J
    J Exp Bot; 2007; 58(2):327-38. PubMed ID: 17175550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.