BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2175285)

  • 1. Scavenging of hypochlorous acid and of myoglobin-derived oxidants by the cardioprotective agent mercaptopropionylglycine.
    Puppo A; Cecchini R; Aruoma OI; Bolli R; Halliwell B
    Free Radic Res Commun; 1990; 10(6):371-81. PubMed ID: 2175285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radical scavenging and inhibition of lipid peroxidation by beta-blockers and by agents that interfere with calcium metabolism. A physiologically-significant process?
    Aruoma OI; Smith C; Cecchini R; Evans PJ; Halliwell B
    Biochem Pharmacol; 1991 Jul; 42(4):735-43. PubMed ID: 1678258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the ability of the angiotensin-converting enzyme inhibitor captopril to scavenge reactive oxygen species.
    Aruoma OI; Akanmu D; Cecchini R; Halliwell B
    Chem Biol Interact; 1991; 77(3):303-14. PubMed ID: 1849048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antioxidant action of ergothioneine.
    Akanmu D; Cecchini R; Aruoma OI; Halliwell B
    Arch Biochem Biophys; 1991 Jul; 288(1):10-6. PubMed ID: 1654816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of 2-mercaptopropionyl glycine on radiation-induced lipid peroxidation in liposomes and in rat liver microsomal suspensions.
    Garner A; Jamal Z; Slater TF
    Int J Radiat Biol Relat Stud Phys Chem Med; 1986 Aug; 50(2):323-35. PubMed ID: 3488289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of a series of coumarins with reactive oxygen species. Scavenging of superoxide, hypochlorous acid and hydroxyl radicals.
    PayĆ” M; Halliwell B; Hoult JR
    Biochem Pharmacol; 1992 Jul; 44(2):205-14. PubMed ID: 1322662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of myoglobin-H2O2-mediated peroxidation reactions by sulfhydryl compounds.
    Mitsos SE; Kim D; Lucchesi BR; Fantone JC
    Lab Invest; 1988 Dec; 59(6):824-30. PubMed ID: 3199797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The antioxidant action of taurine, hypotaurine and their metabolic precursors.
    Aruoma OI; Halliwell B; Hoey BM; Butler J
    Biochem J; 1988 Nov; 256(1):251-5. PubMed ID: 2851980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of hydroxyl radicals in biological systems. Does myoglobin stimulate hydroxyl radical formation from hydrogen peroxide?
    Puppo A; Halliwell B
    Free Radic Res Commun; 1988; 4(6):415-22. PubMed ID: 2854107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular myoglobin loading worsens H2O2-induced, but not hypoxia/reoxygenation-induced, in vitro proximal tubular injury.
    Zager RA
    Circ Res; 1993 Nov; 73(5):926-34. PubMed ID: 8403262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative damage to lipids and alpha 1-antiproteinase by phenylbutazone in the presence of haem proteins: protection by ascorbic acid.
    Evans PJ; Cecchini R; Halliwell B
    Biochem Pharmacol; 1992 Sep; 44(5):981-4. PubMed ID: 1530664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of reoxygenation injury in myocardial infarction: implications of a myoglobin redox cycle.
    Galaris D; Eddy L; Arduini A; Cadenas E; Hochstein P
    Biochem Biophys Res Commun; 1989 May; 160(3):1162-8. PubMed ID: 2730642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products.
    Kaur H; Halliwell B
    Chem Biol Interact; 1990; 73(2-3):235-47. PubMed ID: 2155712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the potential antioxidant and pro-oxidant actions of some neuroleptic drugs.
    Jeding I; Evans PJ; Akanmu D; Dexter D; Spencer JD; Aruoma OI; Jenner P; Halliwell B
    Biochem Pharmacol; 1995 Jan; 49(3):359-65. PubMed ID: 7857323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox cycling of myoglobin and ascorbate: a potential protective mechanism against oxidative reperfusion injury in muscle.
    Galaris D; Cadenas E; Hochstein P
    Arch Biochem Biophys; 1989 Sep; 273(2):497-504. PubMed ID: 2774564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial "stunning" is a manifestation of reperfusion injury.
    Bolli R; Jeroudi MO; Patel BS; Aruoma OI; Halliwell B; Lai EK; McCay PB
    Circ Res; 1989 Sep; 65(3):607-22. PubMed ID: 2548761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes.
    Cederbaum AI; Qureshi A
    Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of lung tissue oxidation during ischemia/reperfusion by 2-mercaptopropionylglycine.
    Ayene IS; al-Mehdi AB; Fisher AB
    Arch Biochem Biophys; 1993 Jun; 303(2):307-12. PubMed ID: 8512317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promotion of oxidative damage to arachidonic acid and alpha 1-antiproteinase by anti-inflammatory drugs in the presence of the haem proteins myoglobin and cytochrome C.
    Evans PJ; Akanmu D; Halliwell B
    Biochem Pharmacol; 1994 Dec; 48(12):2173-9. PubMed ID: 7811298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.