These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21752927)

  • 41. Determination of RNA Structure with In Vitro SHAPE Experiments.
    Baes R; Charlier D; Peeters E
    Methods Mol Biol; 2022; 2516():259-290. PubMed ID: 35922631
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sequence-dependent structural changes in a self-assembling DNA oligonucleotide.
    Saoji M; Paukstelis PJ
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2471-8. PubMed ID: 26627654
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-Watson-Crick base pairs in RNA-protein recognition.
    Hermann T; Westhof E
    Chem Biol; 1999 Dec; 6(12):R335-43. PubMed ID: 10631510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of the local sequence environment on RNA loop structures.
    Schudoma C; Larhlimi A; Walther D
    RNA; 2011 Jul; 17(7):1247-57. PubMed ID: 21628431
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An innate twist between Crick's wobble and Watson-Crick base pairs.
    Ananth P; Goldsmith G; Yathindra N
    RNA; 2013 Aug; 19(8):1038-53. PubMed ID: 23861536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The UA_handle: a versatile submotif in stable RNA architectures.
    Jaeger L; Verzemnieks EJ; Geary C
    Nucleic Acids Res; 2009 Jan; 37(1):215-30. PubMed ID: 19036788
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterizing RNA structures in vitro and in vivo with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq).
    Watters KE; Yu AM; Strobel EJ; Settle AH; Lucks JB
    Methods; 2016 Jul; 103():34-48. PubMed ID: 27064082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The non-Watson-Crick base pairs and their associated isostericity matrices.
    Leontis NB; Stombaugh J; Westhof E
    Nucleic Acids Res; 2002 Aug; 30(16):3497-531. PubMed ID: 12177293
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis.
    Hurst T; Xu X; Zhao P; Chen SJ
    J Phys Chem B; 2018 May; 122(18):4771-4783. PubMed ID: 29659274
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct NMR Evidence that Transient Tautomeric and Anionic States in dG·dT Form Watson-Crick-like Base Pairs.
    Szymanski ES; Kimsey IJ; Al-Hashimi HM
    J Am Chem Soc; 2017 Mar; 139(12):4326-4329. PubMed ID: 28290687
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A base-pairing model of duplex formation. I. Watson-Crick pairing geometries.
    Bashford JD; Jarvis PD
    Biopolymers; 2005 Aug; 78(6):287-97. PubMed ID: 15834953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assembling RNA Nanoparticles.
    Xiao SJ
    Methods Mol Biol; 2017; 1500():81-96. PubMed ID: 27813002
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strong correlation between SHAPE chemistry and the generalized NMR order parameter (S2) in RNA.
    Gherghe CM; Shajani Z; Wilkinson KA; Varani G; Weeks KM
    J Am Chem Soc; 2008 Sep; 130(37):12244-5. PubMed ID: 18710236
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA secondary structure prediction using high-throughput SHAPE.
    Lusvarghi S; Sztuba-Solinska J; Purzycka KJ; Rausch JW; Le Grice SF
    J Vis Exp; 2013 May; (75):e50243. PubMed ID: 23748604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stability of non-Watson-Crick G-A/A-G base pair in synthetic DNA and RNA oligonucleotides.
    Ito Y; Sone Y; Mizutani T
    Mol Biol Rep; 2004 Mar; 31(1):31-6. PubMed ID: 15040452
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical etiology of nucleic acid structure.
    Eschenmoser A
    Science; 1999 Jun; 284(5423):2118-24. PubMed ID: 10381870
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Frequent occurrence of the T-loop RNA folding motif in ribosomal RNAs.
    Nagaswamy U; Fox GE
    RNA; 2002 Sep; 8(9):1112-9. PubMed ID: 12358430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the occurrence of the T-loop RNA folding motif in large RNA molecules.
    Krasilnikov AS; Mondragón A
    RNA; 2003 Jun; 9(6):640-3. PubMed ID: 12756321
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hybrid simulation approach incorporating microscopic interaction along with rigid body degrees of freedom for stacking between base pairs.
    Mondal M; Halder S; Chakrabarti J; Bhattacharyya D
    Biopolymers; 2016 Apr; 105(4):212-26. PubMed ID: 26600167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.
    Wilkinson KA; Gorelick RJ; Vasa SM; Guex N; Rein A; Mathews DH; Giddings MC; Weeks KM
    PLoS Biol; 2008 Apr; 6(4):e96. PubMed ID: 18447581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.