These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2175293)

  • 1. Hepatobiliary effects of morphine are mediated in the brain.
    Hurwitz A; Looney G; Sullins M; Ben-Zvi Z
    Hepatology; 1990 Dec; 12(6):1406-12. PubMed ID: 2175293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loperamide effects on hepatobiliary function, intestinal transit and analgesia in mice.
    Hurwitz A; Sztern MI; Looney GA; Ben-Zvi Z
    Life Sci; 1994; 54(22):1687-98. PubMed ID: 8177010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent central and peripheral mediation of morphine-induced inhibition of gastrointestinal transit in rats.
    Gmerek DE; Cowan A; Woods JH
    J Pharmacol Exp Ther; 1986 Jan; 236(1):8-13. PubMed ID: 3941402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of morphine and clonidine on sulphobromophthalein disposition in mice.
    Ben-Zvi Z; Hurwitz A
    J Pharm Pharmacol; 1986 Jun; 38(6):481-3. PubMed ID: 2873230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naloxone and norbinaltorphimine administered intracerebroventricularly antagonize spinal morphine-induced antinociception in mice through the antianalgesic action of spinal dynorphin A (1-17).
    Holmes BB; Fujimoto JM
    J Pharmacol Exp Ther; 1992 Apr; 261(1):146-53. PubMed ID: 1348537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the morphine-induced inhibition of small and large intestinal transit: Involvement of central and peripheral μ-opioid receptors in mice.
    Matsumoto K; Umemoto H; Mori T; Akatsu R; Saito S; Tashima K; Shibasaki M; Kato S; Suzuki T; Horie S
    Eur J Pharmacol; 2016 Jan; 771():220-8. PubMed ID: 26712376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the involvement of central opioidergic systems in L-tyrosine methyl ester-induced analgesia in the rat.
    Ramarao P; Bhargava HN
    Pharmacology; 1988; 37(1):1-7. PubMed ID: 3420162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential mechanisms mediating beta-endorphin- and morphine-induced analgesia in mice.
    Suh HH; Fujimoto JM; Tseng LL
    Eur J Pharmacol; 1989 Sep; 168(1):61-70. PubMed ID: 2531093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal kappa receptor-mediated analgesia of E-2078, a systemically active dynorphin analog, in mice.
    Nakazawa T; Furuya Y; Kaneko T; Yamatsu K
    J Pharmacol Exp Ther; 1991 Jan; 256(1):76-81. PubMed ID: 1671100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of opioid antinociception and central gastrointestinal propulsion in the mouse: studies with naloxonazine.
    Heyman JS; Williams CL; Burks TF; Mosberg HI; Porreca F
    J Pharmacol Exp Ther; 1988 Apr; 245(1):238-43. PubMed ID: 2834537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opioid effects on hepatic disposition of dyes in mice.
    Hurwitz A; Fischer HR; Innis JD; Ronsse S; Ben-Zvi Z
    J Pharmacol Exp Ther; 1985 Mar; 232(3):617-23. PubMed ID: 3973820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Narcotic effects on hepatic disposition of sulfobromophthalein in rats.
    Hurwitz A; Fischer HR
    J Pharmacol Exp Ther; 1983 Oct; 227(1):68-72. PubMed ID: 6620173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphine-induced straub tail response: mediated by central mu2-opioid receptor.
    Nath C; Gupta MB; Patnaik GK; Dhawan KN
    Eur J Pharmacol; 1994 Sep; 263(1-2):203-5. PubMed ID: 7821354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of spinal kappa opioid receptors in a type of footshock induced analgesia in mice.
    Menendez L; Andres-Trelles F; Hidalgo A; Baamonde A
    Brain Res; 1993 May; 611(2):264-71. PubMed ID: 8392894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analgesia produced by normal doses of opioid antagonists alone and in combination with morphine.
    Vaccarino AL; Tasker RAR; Melzack R
    Pain; 1989 Jan; 36(1):103-109. PubMed ID: 2537485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential actions of intrathecal naloxone on blocking the tail-flick inhibition induced by intraventricular beta-endorphin and morphine in rats.
    Tseng LF; Fujimoto JM
    J Pharmacol Exp Ther; 1985 Jan; 232(1):74-9. PubMed ID: 3155550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonism by nalmefene of systemic and intrathecal morphine-induced analgesia in mice.
    Roerig SC; Arteau C; Fujimoto JM
    Proc Soc Exp Biol Med; 1987 Nov; 186(2):234-9. PubMed ID: 3671362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paradoxical effects of the opioid antagonist naltrexone on morphine analgesia, tolerance, and reward in rats.
    Powell KJ; Abul-Husn NS; Jhamandas A; Olmstead MC; Beninger RJ; Jhamandas K
    J Pharmacol Exp Ther; 2002 Feb; 300(2):588-96. PubMed ID: 11805221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological actions of a novel mixed opiate agonist/antagonist: naloxone benzoylhydrazone.
    Gistrak MA; Paul D; Hahn EF; Pasternak GW
    J Pharmacol Exp Ther; 1989 Nov; 251(2):469-76. PubMed ID: 2553921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperglycaemia, a morphine-like effect produced by naloxone in the cat.
    Feldberg W; Pyke DA; Stubbs WA
    J Physiol; 1983 Jul; 340():121-8. PubMed ID: 6887043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.