BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21753023)

  • 1. Development of cortical orientation selectivity in the absence of visual experience with contour.
    Ohshiro T; Hussain S; Weliky M
    J Neurophysiol; 2011 Oct; 106(4):1923-32. PubMed ID: 21753023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging feed-forward inhibition allows the robust formation of direction selectivity in the developing ferret visual cortex.
    Van Hooser SD; Escobar GM; Maffei A; Miller P
    J Neurophysiol; 2014 Jun; 111(11):2355-73. PubMed ID: 24598528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex.
    Chapman B; Zahs KR; Stryker MP
    J Neurosci; 1991 May; 11(5):1347-58. PubMed ID: 2027051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex.
    White LE; Coppola DM; Fitzpatrick D
    Nature; 2001 Jun; 411(6841):1049-52. PubMed ID: 11429605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stroboscopic rearing reduces direction selectivity in rabbit visual cortex.
    Pearson HE; Berman N; Murphy EH
    Brain Res; 1981 Jan; 227(1):127-31. PubMed ID: 7470930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of direction selectivity in ferret visual cortex requires early visual experience.
    Li Y; Fitzpatrick D; White LE
    Nat Neurosci; 2006 May; 9(5):676-81. PubMed ID: 16604068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strobe rearing prevents the convergence of inputs with different response timings onto area 17 simple cells.
    Humphrey AL; Saul AB; Feidler JC
    J Neurophysiol; 1998 Dec; 80(6):3005-20. PubMed ID: 9862902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Cross-Orientation Suppression and Size Tuning and the Role of Experience.
    Popović M; Stacy AK; Kang M; Nanu R; Oettgen CE; Wise DL; Fiser J; Van Hooser SD
    J Neurosci; 2018 Mar; 38(11):2656-2670. PubMed ID: 29431651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual experience without lines: effect on developing cortical neurons.
    Pettigrew JD; Freeman RD
    Science; 1973 Nov; 182(4112):599-601. PubMed ID: 4746487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronous activity in cat visual cortex encodes collinear and cocircular contours.
    Samonds JM; Zhou Z; Bernard MR; Bonds AB
    J Neurophysiol; 2006 Apr; 95(4):2602-16. PubMed ID: 16354730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of direction selectivity in mouse cortical neurons.
    Rochefort NL; Narushima M; Grienberger C; Marandi N; Hill DN; Konnerth A
    Neuron; 2011 Aug; 71(3):425-32. PubMed ID: 21835340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
    Jagadeesh B; Wheat HS; Kontsevich LL; Tyler CW; Ferster D
    J Neurophysiol; 1997 Nov; 78(5):2772-89. PubMed ID: 9356425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Acute Visual Experience on Development of LGN Receptive Fields in the Ferret.
    Stacy AK; Schneider NA; Gilman NK; Van Hooser SD
    J Neurosci; 2023 May; 43(19):3495-3508. PubMed ID: 37028934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse coding on the spot: spontaneous retinal waves suffice for orientation selectivity.
    Hunt JJ; Ibbotson M; Goodhill GJ
    Neural Comput; 2012 Sep; 24(9):2422-33. PubMed ID: 22734490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Model for the Origin of Motion Direction Selectivity in Visual Cortex.
    Freeman AW
    J Neurosci; 2021 Jan; 41(1):89-102. PubMed ID: 33203740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for development of Gabor-receptive fields in simple cortical cells.
    Hamada T; Kato K; Okada K
    Neuroreport; 1996 Feb; 7(3):745-8. PubMed ID: 8733736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural plasticity in visual cortex of adult cats after exposure to visual patterns.
    Creutzfeldt OD; Heggelund P
    Science; 1975 Jun; 188(4192):1025-7. PubMed ID: 1145187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The laminar development of direction selectivity in ferret visual cortex.
    Clemens JM; Ritter NJ; Roy A; Miller JM; Van Hooser SD
    J Neurosci; 2012 Dec; 32(50):18177-85. PubMed ID: 23238731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptive fields and response properties of neurons in layer 4 of ferret visual cortex.
    Usrey WM; Sceniak MP; Chapman B
    J Neurophysiol; 2003 Feb; 89(2):1003-15. PubMed ID: 12574476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.