These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21753026)

  • 81. Orienting behavior by rats with visual cortical and subcortical lesions.
    Midgley GC; Tees RC
    Exp Brain Res; 1981; 41(3-4):316-28. PubMed ID: 7215493
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Directing attention to a location in space results in retinotopic activation in primary visual cortex.
    Munneke J; Heslenfeld DJ; Theeuwes J
    Brain Res; 2008 Jul; 1222():184-91. PubMed ID: 18589405
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data.
    Larsson J; Harrison C; Jackson J; Oh SM; Zeringyte V
    J Neurophysiol; 2017 Feb; 117(2):818-835. PubMed ID: 27903637
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The Influence of a Memory Delay on Spatial Coding in the Superior Colliculus: Is Visual Always Visual and Motor Always Motor?
    Sadeh M; Sajad A; Wang H; Yan X; Crawford JD
    Front Neural Circuits; 2018; 12():74. PubMed ID: 30405361
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Neuronal activity in the primary visual cortex of the cat freely viewing natural images.
    Maldonado PE; Babul CM
    Neuroscience; 2007 Feb; 144(4):1536-43. PubMed ID: 17187932
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Global Motion Processing in Human Visual Cortical Areas V2 and V3.
    Furlan M; Smith AT
    J Neurosci; 2016 Jul; 36(27):7314-24. PubMed ID: 27383603
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping.
    Hopf JM; Mangun GR
    Clin Neurophysiol; 2000 Jul; 111(7):1241-57. PubMed ID: 10880800
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention.
    Cutrell EB; Marrocco RT
    Exp Brain Res; 2002 May; 144(1):103-13. PubMed ID: 11976764
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Engagement of visual fixation suppresses sensory responsiveness and multisensory integration in the primate superior colliculus.
    Bell AH; Corneil BD; Munoz DP; Meredith MA
    Eur J Neurosci; 2003 Nov; 18(10):2867-73. PubMed ID: 14656336
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Attentional inhibition of visual processing in human striate and extrastriate cortex.
    Slotnick SD; Schwarzbach J; Yantis S
    Neuroimage; 2003 Aug; 19(4):1602-11. PubMed ID: 12948715
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Spatial characteristics of visual-auditory summation in human saccades.
    Hughes HC; Nelson MD; Aronchick DM
    Vision Res; 1998 Dec; 38(24):3955-63. PubMed ID: 10211387
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex.
    Wang Q; Burkhalter A
    J Neurosci; 2013 Jan; 33(4):1696-705. PubMed ID: 23345242
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Wide-field nondirectional visual units in the pretectum: do they suppress ocular following of saccade-induced visual stimulation.
    Ibbotson MR; Mark RF
    J Neurophysiol; 1994 Sep; 72(3):1448-50. PubMed ID: 7807228
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Saccade target selection in the superior colliculus during a visual search task.
    McPeek RM; Keller EL
    J Neurophysiol; 2002 Oct; 88(4):2019-34. PubMed ID: 12364525
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Linking visual response properties in the superior colliculus to saccade behavior.
    Marino RA; Levy R; Boehnke S; White BJ; Itti L; Munoz DP
    Eur J Neurosci; 2012 Jun; 35(11):1738-52. PubMed ID: 22639796
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates.
    Stuphorn V; Bauswein E; Hoffmann KP
    J Neurophysiol; 2000 Mar; 83(3):1283-99. PubMed ID: 10712456
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Saccadic inhibition in voluntary and reflexive saccades.
    Reingold EM; Stampe DM
    J Cogn Neurosci; 2002 Apr; 14(3):371-88. PubMed ID: 11970798
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Time-window-of-integration (TWIN) model for saccadic reaction time: effect of auditory masker level on visual-auditory spatial interaction in elevation.
    Colonius H; Diederich A; Steenken R
    Brain Topogr; 2009 May; 21(3-4):177-84. PubMed ID: 19337824
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Superior colliculus inactivation alters the weighted integration of visual stimuli.
    Nummela SU; Krauzlis RJ
    J Neurosci; 2011 Jun; 31(22):8059-66. PubMed ID: 21632927
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Control of the superior colliculus by the lateral prefrontal cortex.
    Everling S; Johnston K
    Philos Trans R Soc Lond B Biol Sci; 2013 Oct; 368(1628):20130068. PubMed ID: 24018729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.